DOI: 10.3724/SP.J.1145.2013.00990

Chinese Journal of Appplied Environmental Biology (应用与环境生物学报) 2013/19:6 PP.990-996

Expression of Endoglucanase Gene and β-Glucosidase Genes in Bacillus subtilis

In order to archive the secretory coexpression of cellulase genes, this study used the pP43JM2 shuttle vector carrying NprB signal peptide of the Bacillus subtilis neutral protease as expression vector to express in B. subtilis WB800 the celA gene from Clostridium thermocellum DSM 1237 encoding endoglucanase and bglA and bglB genes from B. polymyxa encoding β-glucosidases. The results showed that the endoglucanase encoded by celA and the β-glucosidases encoded by bglB were secreted into the culture broth successfully; the two cellulase genes could be coexpressed and secreted; the extracellular enzyme solution reacted with PASC and cellobiose, producing 674 and 24 mg/L glucose, respectively; on the contrary, the β-glucosidases encoded by bglA did not react with PASC, only with cellobiose, its intracellular enzyme solution producing 938.7 mg/L glucose. The current work suggested a possible method for multiple cellulase secretion in B. subtilis and may provide a way of economical construction of bioprocessing strains for bulk chemical production. Fig 6, Tab 2, Ref 18

Key words:Bacillus subtilis,β-glucosidase,endoglucanase,extracellular secretion,coexpression

ReleaseDate:2015-04-15 08:42:22

[1] Sun Y, Cheng JY. Hydrolysis of lignocellulosic materials for ethanol production: a review [J]. Bioresour Technol, 2002, 83 (1): 1-11

[2] Bhatia Y, Mishra M, Bisaria VS. Microbial β-glucosidases: cloning, properties, and applications [J]. Crit Rev Biotechnol, 2002, 22 (4): 375-407

[3] 洪 剑 辉, 张 梁, 石 贵 阳, 王 正 祥, 章 克 昌 . 利 用 纤 维 二 糖 的 酵母工 程 菌 构建 [J]. 应 用与环 境 生物 学 报, 2006, 12 (3): 391-394[Hong JH, Zhang L, Shi GY, Wang ZX, Zhang KC. Construction ofrecombinant yeast strain using cellobiose as sole carbon source [J].Chin J Appl Environ Biol, 2006, 12 (3): 391-394]

[4] Candelas LG, A r istoy MC, Polai na J, Flors A. Clon i ng andcharacterization of two genes from Bacillus polymyxa expressingβ-glucosidase activity in Escherichia coli [J]. Appl Environ Microbiol, 1989, 55 (12): 3173-3177

[5] Vazana Y, Mora?s S, Barak Y, Lamed R, Bayer EA. Interplay betweenClostridium thermocellum family 48 and family 9 cellulases in thecellulosomal versus noncellulosomal states [J]. Appl Environ Microbiol, 2010, 76 (10): 3236-3243

[6] Yao Q, Sun TT, Chen GJ, Liu WF. Heterologous expression and sitedirected mutagenesis of endoglucanase CelA from Clostridiumthermocellum [J]. Biotechnol Lett, 2007, 29: 1243-1247

[7] Zhang XZ, Zhang YH. One-step production of biocommodities fromlignocellulolytic biomass by recombinant cellulolytic Bacillus subtilis:opportunities and challenges [J]. Eng Life Sci, 2010, 10 (5): 398-406

[8] Petit MA, Joliff G, Mesas JM, Klier A, Rapoport G, Ehrlich SD.Hypersecretion of a cellulase from Clostridium thermocellum in Bacillussubtilis by induction of chromosomal DNA amplification [J]. NatBiotechnol, 1990, 8: 559-563

[9] Aminov RI, Golovchenko NP, Ohmiya K. Expression of a celE gene fromClostridium thermocellum in Bacillus [J]. J Ferment Bioeng, 1995, 79 (6):530-537

[10] Cho HY, Yukawa H, Inui M, Doi RH, Wong SL. Production ofminicellulosomes from Clostridium cellulovorans in Bacillus subtilisWB800 [J]. Appl Environ Microbiol, 2004, 70 (9): 5704-5707

[11] Romero S, Merino E, Bolívar F, Gosset G, Martinez A. Metabolicengineering of Bacillus subtilis for ethanol production: lactatedehydrogenase plays a key role in fermentative metabolism [J]. ApplEnviron Microbiol, 2007, 73: 5190-5198

[12] Zhang XZ, Sathitsuksanoh N, Zhu ZG, Zhang YH. One-step productionof lactate from cellulose as the sole carbon source without any otherorganic nutrient by recombinant cellulolytic Bacillus subtilis [J]. MetabEng, 2011, 13 (4): 364-372

[13] Wu SC, Yeung JC, Duan YJ, Ye RQ, Szarka SJ, Habibi HR, Wong SL.Functional production and characterization of a fi brin-speci fi c singlechain antibody fragment from Bacillus subtilis: effects of molecularchaperones and a wall-bound protease on antibody fragment production[J]. Appl Environ Microbiol, 2002, 68 (7): 3261-3269

[14] Dartois V, Coppee JY, Colson C, .Baulard A. Genetic a nalysis andoverexpression of lipolytic activity in Bacillus subtilis [J]. Appl EnvironMicrobiol, 1994, 60: 1670-1673

[15] Liu JM, Xin XJ, Li CX, Bao J. Cloning of thermostable cellulase genesof Clostridium thermocellum and their secretive expression in Bacillussubtilis [J]. Appl Biochem Biotechnol, 2012, 166: 652-662

[16] Luria SE, Delbruck M. Mutations of bacteria from virus sensitivity tovirus resistance [J]. Genetics, 1943, 28: 491-511

[17] John S. Transformation of biochemically de ficient strains of Bacillussubtilis by deoxyribonucleotide [J]. Proc Natl Acad Sci USA, 1958, 44:1072-1078

[18] Zhang YH, Cui J, Lynd LR, Kuang LR. A transition from celluloseswelling to cellulose dissolution by o-phosphoric acid: evidencesfrom enzymatic hydrolysis and supramolecular str ucture [J].Biomacromolecules, 2006, 7 (2): 644-648