doi:

DOI: 10.3724/SP.J.1145.2013.01014

Chinese Journal of Appplied Environmental Biology (应用与环境生物学报) 2013/19:6 PP.1014-1019

Asymmetric Ketone Reduction Using Targeted Yeast Collections Isolated from Chinese Liquor Pits


Abstract:
Plenty of bacteria, yeasts, molds have been found in Chinese liquor pits. In order to investigate the applications of specifi c yeasts on ketone reduction, we screened some yeast strains in the Yeast Library of Chinese Liquor Pits in Chengdu Institute of Biology, Chinese Academy of Sciences, using f ive carbonyl compounds as potential substrates. The results indicated that the majority of the strains were capable of ketone reduction, and most of them obeyed the Prelog's rule. Some of the strains showed excellent stereo-selectivity, indicating high application potential in chiral drug intermediates production. For example, Williopsis sp. 2.045 transfered 3, 5-bis(trif luoromethyl)-acetophenone into(S)-3, 5-bis(trif luoromethyl)-1-phenethanol with over 99% yield and ee; Rhodotorula sp. 2.154 changed N-methyl-3-oxo-3-(thiophen-2-yl)propanamide into(S)-3-hydroxy-N-methyl-3-(thiophen-2-yl)propanamide with a yields of 95% and 99% ee. The results suggested that Chinese liquor pits contains lots of bioresources with high ketone reducing activity. It could be used as a targeted library in the screening of microbes with ketone reductase activity, which can highly improve the eff iciency of strain screening. Fig 6, Tab 6, Ref 24

Key words:ketone reductase,strain screening,yeast,chiral alcohol,Chinese liquor

ReleaseDate:2015-04-15 08:42:22



[1] Hanson RL, Goldberg S, Goswami A, Tully TP, Patel RN. Puri fi cationand cloning of a ketoreductase used for the preparation of chiral alcohols[J]. Adv Synth Catal, 2005, 347 (7-8): 1073-1080

[2] Liu ZQ, Li Y, Ping LF, Xu YY, Cui FJ, Xue YP, Zheng YG. Isolation andidenti fi cation of a novel Rhodococcus sp. ML-0004 producing epoxidehydrolase and optimization of enzyme production [J]. Process Biochem, 2007, 42 (5): 889-894

[3] Guo ZW, Chen YJ, Goswami A, Hanson RL, Patel RN. Synthesis of ethyland t-butyl (3R, 5S )-dihydroxy-6-benzyloxy hexanoates via diastereoand enantioselective microbial reduction. Tetrahedron: Asymmetry, 2006, 17 (10): 1589-1602

[4] Yang G, Wu JP, Xu G, Yang LR. Improvement of catalytic propertiesof lipase from Arthrobacter sp. by encapsulation in hydrophobic sol-gelmaterials [J]. Bioresour Technol, 2009, 100 (19): 4311-4316

[5] Wang LJ, Li CX, Ni Y, Zhang J, Liu X, Xu JH. Highly effi cient synthesisof chiral alcohols with a novel NADH-dependent reductase fromStreptomyces coelicolor [J]. Bioresour Technol, 2011, 102 (14): 7023-7028

[6] Ni Y, Zhou JY, Sun ZH. Production of a key chiral intermediate ofBetahistine with a newly isolated Kluyveromyces sp. in an aqueous twophase system [J]. Process Biochem, 2012, 47 (7): 1042-1048

[7] Gooding OW, Voladri R, Bautista A, Hopkins T, Huisman G, Jenne S, Ma S, Mundorff EC, Savile MM. Development of a practical biocatalyticprocess for (R)-2-methylpentanol [J]. Org Process Res Dev, 2010, 14:119-126

[8] Liang J, Lalonde J, Borup B, Mitchell V, Mundorff E, Trinh N, KochrekarDA, Cherat RN, Pai GG. Development of a biocatalytic process as analternative to the (-)-DIP-Cl-mediated asymmetric reduction of a keyintermediate of montelukast [J]. Org Process Res Dev, 2010, 14: 193-198

[9] Liang J, Mundorff E, Voladri R, Jenne S, Gilson L, Conway A, KrebberA, Wong J, Huisman G, Truesdell S, Lalonde J. Highly enantioselectivereduction of a small heterocyclic ketone-biocatalytic reduction oftetrahydrothiophene-3-one to the corresponding (R)-alcohol [J]. OrgProcess Res Dev, 2010, 14: 188-192

[10] Li Z, Liu WD, Chen X, Jia SR, Wu QQ, Zhu DM, Ma YH. Highlyenantioselective double reduction of phenylglyoxal to (R)-1-phenyl-1, 2-ethanediol by one NADPH-dependent yeast carbonyl reductase with abroad substrate pro fi le [J]. Tetrahedron, 2013, 69 (17): 3561-3564

[11] Zhang R, Geng Y, Xu Y, Zhang W, Wang S, Xiao R. Carbonyl reductaseSCRII from Candida parapsilosis catalyzes anti-Prelog reaction to (S)-[1]-phenyl-1, 2-ethanediol with absolute stereochemical selectivity [J].Bioresour Technol, 2011, 102 (2): 483-489

[12] Patel RN, Banerjee A, Howell JM, McNamee CG, Brozozowski D, Mirfakhrae D, Nanduri V, Thottathii JK, Szarka LJ. Microbial synthesisof (2R, 3S )-(-)-N-benzoyl-3-phenyl isoserine ethyl ester-a taxol sidechain synthon [J]. Tetrahedron: Asymmetry, 1993, 4 (9): 2069-2084

[13] Crocq V, Masson C, Winter J, Richard C, Lemaitre G, Lenay J, VivatM, Buendia J, Prat D. Synthesis of Trimegestone: the first industrialapplication of bakers’ yeast mediated reduction of a ketone [J]. OrgProcess Res Dev, 1997, 1 (1): 2-13

[14] Truppo MD, Kim J, Brower M, Madin A, Sturr MG, Moore JC. A novelresolution of a pharmaceutically important bridged bicyclic ketoneintermediate via selective enzymatic reduction with a commerciallyavailable ketoreductase [J]. J Mol Catal B: Enzym, 2006, 38 (3-6): 158-162

[15] Zhang R, Xu Y, Sun Y, Nie Y, Mu X, Li X, Zhang XC, Rao Z.Crystallization and preliminary X-ray crystallographic analysis of acarbonyl reductase from Candida parapsilosis [J]. Acta Crystallogr SectF Struct Biol Cryst Commun, 2008, 64 (Pt 4): 252-254

[16] Li N, Ni Y, Sun ZH. Purification and characterization of carbonylreductase from Candida krusei SW 2026 involved in enantioselectivereduction of ethyl 2-oxo-4-phenylbutyrate [J]. J Mol Catal B: Enzym, 2010, 66 (1-2): 190-197

[17] Singh A, Bhattachar y ya MS, Banerjee UC. Purif ication andcharacterization of carbonyl reductase from Geotrichum candidum [J].Process Biochem, 2009, 44 (9): 986-991

[18] Soni P, Kansal H, Banerjee UC. Puri fi cation and characterization of anenantioselective carbony l reductase from Candida viswanathii MTCC5158 [J]. Process Biochem, 2007, 42 (12): 1632-1640

[19] Nie Y, Xu Y, Yang M, Mu XQ. A novel NADH-dependent carbonylreductase with unusual stereoselecti vity for (R)-speci fi c reduction froman (S)-1-phenyl-1, 2-ethanediol-producing micro-organism: puri fi cationand characterization [J]. Lett Appl Microbiol, 2007, 44 (5): 555-562

[20] 羊明, 徐岩, 穆晓清, 肖荣 . 近平滑假 丝酵 母 NAD(H) 依 赖型次级醇脱氢酶的分离纯化及酶学性质 [J]. 应用与环境生物学报, 2007, 13 (1): 121-125 [Yang M, Xu Y, Mu XQ, Xiao R. Purification andcharacterization of NAD(H) dependent second alcohol dehydrogenasefrom Candida parapsilosis [J]. Chin J Appl Environ Biol, 2007, 13 (1):121-125]

[21] 杨 涛, 梁明锋, 李国友, 吴林蔚, 庄名扬. 微生物技术在酱香型白酒生产中的应用研究[J]. 酿酒科技, 2011, 202: 20-28 [Yang T, Liang MF, Li GY, Wu LW, Zhuang MY. Research on the application of microbialtechnology in the production of maotai- fl avor liquor [J]. Liquor-makingSci Technol, 2011, 202: 20-28]

[22] Homann MJ, Vail RB, Previte E, Tamarez M, Morgan B, Dodds DR, Zaks A. Rapid identi fi cation of enantioselective ketone reductions usingtargeted micr obial libraries [J]. Tetrahedron, 2004, 60 (3): 789-797

[23] Tang CG, Lin H, Zhang C, Liu ZQ, Yang T, Wu ZL. Highlyenantioselective bioreduction of N-methyl-3-oxo-3-(thiophen-2-yl)propanamide for t he production of (S)-duloxetine [J]. Biotechnol Lett, 2011, 33 (7): 1435-1440

[24] 盖萍, 汤传根, 刘静媛, 刘艳, 张超, 吴中柳. 氧化微杆菌C3催化 3, 5-双三氟甲基苯乙酮的不对称反-Prelog还原 [J]. 应用与环境生物学报, 2013, 19 (1): 37-42 [Gai P, Tang CG, Liu JY, Liu Y, Zhang C, WuZL. Asymmetric anti-Prelog reduction of 3, 5-bis(trifluoromethyl)-acetophenone by Microbacterium oxydans C3 [J]. Chin J Appl EnvironBiol, 2013, 19 (1): 37-42]