DOI: 10.3724/SP.J.1145.2013.01040

Chinese Journal of Appplied Environmental Biology (应用与环境生物学报) 2013/19:6 PP.1040-1045

Effects of pH and Temperature on the Dissimilatory Reduction of Fe(Ⅲ) by Activated Sludge under Anoxic/anaerobic Condition

This research aimed to study the dissimilatory Fe(Ⅲ) reduction characteristics by conventional activated sludge under different initial pH and temperature conditions. The static cultivation experiments were conducted under a constant temperature at anoxic/anaerobic condition, with Fe2O3 added as Fe(Ⅲ) source for enrichment culture of iron reducing bacteria. The results showed that:(1) The initial pH value of neutral by alkaline in the activated sludge system was favorable to Fe(Ⅲ) dissimilatory reducing process of activated sludge microorganism, with the pH value reaching fi nal balance at around 8;(2) At the controlled temperatures of 15 ℃, 25 ℃ and 35 ℃, the cumulative amount and rate of Fe(Ⅱ) were positively correlated with temperature, with the corresponding Fe(Ⅱ) accumulation rates as 15.62, 28.11 and 28.52 mg L-1 d-1, respectively under anoxic condition, and 19.65, 28.57 and 35.17 mg L-1 d-1 under anaerobic condition;(3) From the overall experiment, the difference of the IRB reduction characteristics was not obvious under anoxic/anaerobic conditions. This research provided a theoretical basis for strengthening dissimilatory reduction of Fe(Ⅲ) of sewage treatment process. Fig 6, Tab 3, Ref 30

Key words:activated sludge,iron-reducing bacteria,enrichment culture,reduction characteristic,influencing factor

ReleaseDate:2015-04-15 08:42:23

[1] Li FB, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, Xu W, Liu TX, Feng CH. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide [J]. Environ Pollut, 2010, 158 (5): 1733-1740

[2] Botton S, Van Harmelen M, Braster M, Parsons JR, Roling WFM. Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer [J]. FEMS Microbiol Ecol, 2007, 62 (1): 118-130

[3] Nielsen JL, Juretschko S, Wagner M., Nielsen PH. Abundance and phylogenetic affi liation of iron reducers in activated sludge as assessed by fl uorescence in situ hybridization and microautoradiography [J]. Appl Environ Microbiol, 2002, 68 (9): 4629-4636

[4] 张丽新, 曲东, 易维洁. 温 度 及 AQDS对氧化铁微 生物还原 过程的 影响 [J]. 西北 农林 科 技大学学报 (自然科学版 ), 2009, 37 (3): 193-199 [Zhang LX, Qu D, Yi WJ. Effect of temperature and AQDS on ferricoxide microorganism reduction process [J]. J Northwest A & F University (Nat Sci Ed), 2009, 37 (3): 193-199]

[5] 何秋香, 郭敏容, 陈文瑞, 林玉满, 陈祖亮. 影响高岭土中 Fe(III)生物还 原的因素[J]. 矿物学报, 2011, 31 (2): 296-301 [He QX, Guo MR, Chen WR, Lin YM, Chen ZL. In fl uence of chemical composition in leaching solution on bioleaching of iron from kaolin by using Fe(III)-reducing bacteria [J]. Acta Mineral Sin, 2011, 31 (2): 296-301]

[6] 易维洁, 曲东, 朱超, 杨冰 . 磷酸 盐浓度 对微 生物铁 还原过程的影 响 [J]. 天津大学学报, 2012, 45 (10): 938-944 [Yi WJ, Qu D, Zhu C, Yang B. Effects of phosphate concentration on microbial iron reduction [J]. J Tianjin Univ, 2012, 45 (10): 938-944]

[7] Lu W, Wang H, Huang C, Reichardt W. Aromatic compound degradation by iron reducing bacteria isolated from irrigated tropical paddy soils [J]. J Environ Sci, 2008, 20 (12): 1487-1493

[8] Rasmussen H, Nielsen PH. Iron reduction in activated sludge measured with different extraction techniques [J]. Water Res, 1996, 30 (3): 551-558

[9] 国家 环 境保 护总局 . 水 和废 水 检 测分析方 法 [M]. 4版 . 中国环 境 科学出版社, 2002 [State Environmental Protection Administration. Water and Wastewater Monitoring Method [M]. 4th ed. Beijing: China Environmental Science Press, 2002]

[10] Lee EY, Cho KS, WookRyu H. Microbial re fi nement of kaolin by ironreducing bacteria [J]. Appl Clay Sci, 2002, 22 (1): 47-53

[11] 迟光宇, 张兆伟, 陈欣, 史奕 . 土壤Fe(Ⅲ)异化还原机理及影响因素 研究进展[J]. 生态学杂志, 2007, 26 (12): 2075-2080 [Chi GY, Zhang ZW, Chen X, Shi Y. Research advances in the mechanisms and affecting factors of soil Fe(III) dissimilatory reduction [J]. Chin J Ecol, 2007, 26 (12): 2075-2080]

[12] 朱文涛, 邱新平. 化学动力学中活化能与反应热和活化焓关系的研 究[J]. 清华大学学报(自然科学版), 1999, 39 (6): 23-24 [Zhu WT, Qiu XP. Relations of reactionheat-activation energy and activation enthalpyactivation energy in chemical dynamics [J]. J Tsinghua Univ (Sci & Tech Ed), 1999, 39 (6): 23-24]

[13] 陈静, 李健美. 活化能与温度关系图的计算机辅助释疑[J]. 化学研 究, 2000, 11 (3): 54-57 [Chen J, Li JM. An improvement of picture of relationship between activation energy and temperature by CAI [J]. Chem Res, 2000, 11 (3): 54-57]

[14] Chin KJ, Conrad R. Intermediary metabolism in methanogenic paddy soil and the in fl uence of temperature [J]. FEMS Microbiol Ecol, 2006, 18 (2): 85-102

[15] Slobodkin A, Reysenbach AL, Str utz N, Dreier M, Wiegel J. Thermoterra bacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring [J]. Intern J Syst Bacteriol, 1997, 47 (2): 541-547

[16] Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Gray MS. Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate [J]. Appl Environ Microbiol, 1999, 65 (3): 1214-1221

[17] Nielsen PH. The significance of microbial Fe(III) reduction in the activated sludge process [J]. Water Sci Technol, 1996, 34 (5): 129-136

[18] Ivanov V, Stabnikov V, Zhuang W Q, Tay JH, Tay STL. Phosphate removal from the returned liquor of municipal wastewater treatment plant using iron-reducing bacteria [J]. J Appl Microbiol, 2005, 98 (5):1152-1161

[19] Hansel CM, Benner SG, Nico P, Fendorf S. Structural constraints of ferric (hydr) oxides on dissimilatory iron reduction and the fate of Fe (II)[J]. Geochim cosmochim, 2004, 68 (15): 3217-3229

[20] Benner SG, Hansel CM, Wielinga BW, Barber TM, Fendorf S. Reductive dissolution and biomineralization of iron hydroxide under dynamic fl ow conditions [J]. Environ Sci Technol, 2002, 36 (8): 1705-1711

[21] Fredrickson JK, Zachara JM, Kennedy DW, Dong H, Onstott TC, Hinman NW, Li SM. Biogenic iron mineralization accompanying the dissimilatory reduction ofhydrous ferric oxide by a groundwater bacterium [J]. Geochim Cosmochim Acta, 1998, 62 (19/20): 3239-3257

[22] 罗廷和 . 铁矿石还原机理探讨 [J]. 武汉科技大学学报(自然科学版), 1984, 4 (12): 105-112 [Luo TH. On the mechanism of iron ore reduction[J]. J Wuhan Univ Sci Technol (Nat Sci Ed), 1984, 4 (12): 105-112]

[23] Amonette JE, Workman DJ, Kennedy DW, Fruchter JS, Gorby YA. Dechlorination of carbon tetrachloride by Fe (II) associated with goethite [J]. Environ Sci Technol, 2000, 34 (21): 4606-4613

[24] Roden EE, Zachara JM. Microbial reduction of crystalline iron (III) oxides: in fl uence of oxide surface area and potential for cell growth [J]. Environ Sci Technol, 1996, 30 (5): 1618-1628

[25] 许超, 董军, 马小兰, 牛波, 娄权正 . 微生物异化还原铁氧化物体系 对硝基苯的降解作用 [J]. 中国环境科学, 2011, 31 (9): 1472-1476 [Xu C, Dong J, Ma XL, Niu B, Lou QZ. Degradation of nitrobenzene by bacterial dissimilatory reduction of iron oxides [J]. China Environ Sci, 2011, 31 (9): 1472-1476]

[26] Kostka JE, Nealson KH. Dissolution and reduction of magnetite by bacteria [J]. Environ Sci Technol, 1995, 29 (10): 2535-2540

[27] Jeon BH, Dempsey BA, Burgos WD, Royer RA. Reactions of ferrous iron with hematite [J]. Colloids Surfaces A: Physicochem Eng Aspects, 2001, 191 (1): 41-55

[28] Coughlin BR, Stone AT. Nonreversible adsorption of divalent metal ions (MnII, CoII, NiII, CuII, and PbII) onto goethite: effects of acidi fi cation, FeII addition, and picolinic acid addition [J]. Environ Sci Technol, 1995, 29 (9): 2445-2455

[29] Fredrickson JK, Zachara JM, Kennedy DW, Dong H, Onstott TC, Hinman NW, Li SM. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium [J]. Geochim Cosmochim Acta, 1998, 62 (19): 239-3257

[30] Tronc E, Belleville P, Jolivet JP, Livage J. Transformation of ferric hydroxide into spinel by iron (II) adsorption [J]. Langmuir, 1992, 8 (1):313-319