DOI: 10.3724/SP.J.1145.2013.01073

Chinese Journal of Appplied Environmental Biology (应用与环境生物学报) 2013/19:6 PP.1073-1078

Application of Faecalibacterium as Index Bacteria of Feces in Water

Faecalibacterium is a kind of dominant bacterium in human and animal intestines. The genes of Faecalibacterium in different hosts have apparent differences. Therefore Faecalibacterium can be used to determine the source of feces, by specificity of Faecalibacterium 16S rDNA in different hosts and quantitative PCR determination method. Compared to traditional aquatic fecal test method, Faecalibacterium has the advantages of higher sensitivity, more accuracy, and shorter time. Choosing Faecalibacterium as the fecal pollution index bacterium can even track different pollution sources, which is superior to the traditional index bacteria, such as Fecal coliform, E. coli, and Enterococcus. This method also compensates for the disadvantages of other traditional microbes. Thus, Faecalibacterium can be used as a detection index for drinking water, domestic sewerage, lake, and river. Faecalibacterium method has received increasing attention for water quality monitoring. The U.S. government has put it as an auxiliary detecting project in drinking water. This paper summarizes the advantages of using Faecalibacterium in tracing the source of water fecal pollution, reviews the method and the application of using Faecalibacterium in aquatic environment, predicts its application in the future, and proposes an accurate way to track feces sources by combining the traditional microbes and Faecalibacterium methods. Tab 5, Ref 46

Key words:Faecalibacterium,microbial source tracking,water detected,biological marker,host-speci fi c

ReleaseDate:2015-04-15 08:42:25

[1] 张曦, 朱昌雄, 朱红惠 . 利用拟杆菌分子标记物对粪便污染溯源的研 究进展[J]. 微生物学报, 2011, 51 (7): 863-868 [Zhang X, Zhu CX, Zhu HH. Uncultivated host-speci fi c bacteroidales markers for identi fi cation of fecal source pollution [J]. Acta Microbiol Sin, 2011, 51 (7): 863-868]

[2] Madigan MT, Martinko JM著. BROCK微生物生物学(上/下) [M]. 李明 春, 杨文博译. 北京: 北京科学出版社, 2009

[3] Shen J, Zhang BR, Wei GF, Pang X, Wei H, Li M, Zhang YJ, Zhao, LP. Molecular pro fi ling of the Clostridium leptum subgroup in human fecal micro flora by PCR-denaturing gradient gel electrophoresis and clone library analysis [J]. Appl Environ Microbiol, 2006, 72 (8): 5232-5238

[4] 李旻. 人体肠道菌群结构与宿主代谢的相关性研究 [D]. 上海: 上海 交通大学, 2009 [Li M. Co-variation analysis of human gut microbial structure and host global metabolism [D]. Shanghai: Shanghai Jiao Tong University, 2009]

[5] 柳欣 源 . 应 用 T-RFLP技 术分析人 肠 道中柔 嫩 梭菌类 群组 成的 研 究 [D]. 上海: 上海交通大学, 2009 [Liu XY. Analyzing the structuer of Clostridium leptum group in human gut by T-RFLP approach [D]. Shanghai: Shanghai Jiao Tong University, 2009]

[6] 申剑 . 寡果糖对人源菌群仔猪肠道菌群结构和宿主代谢的影响 [D]. 上海: 上海交 通大学, 2005 [Shen J. Modulating effects of fructooligosaccharides on gut microbiota and host metabolism in human fl oraassociated piglet model [D]. Shanghai: Shanghai Jiao Tong University, 2005]

[7] 王婷婷. 肠 道菌群结 构变化与结直 肠癌发 生 发 展关 系的研 究 [D]. 上 海 : 上 海 交 通大 学 生命 科 学 技 术 学 院, 2007 [Wang TT. The interactions between structural shifts of gut microbiota and development of colorectal cancer [D]. Shanghai: Shanghai Jiao Tong University, 2007]

[8] Ducan SH, Hold GL, Harmsen HJ, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen.nov., comb. nov [J]. Intern J Syst Evol Microbiol, 2002, 52 (6): 2141-2146

[9] Zheng GL, Carsen CA, Shen Z. Development of poultry fecesspecific PCR assay based on the newly identified insertions with in Faecalibacterium 16S rRNA genes [G]. The 110th General Meeting of American Society for Microbiology, San Diego, California 2010

[10] Zheng G, Yampara-Iquise H, Jones JE, Carson CA. Development of Faecalibacterium 16S rRNA gene marker for identi fication of human faces [J]. J Appl Microbiol, 2009, 10 (106):634-641

[11] Yampaea-Iquise H, Zheng GL, Jones JE, Carson CA. Use of a Bactericides thetaiotaomicron-specific Alpha-1-6, mannanase quantitative PCR to detect human faecal pollution in water [J]. J Appl Microbial, 2008. 105 (15): 1686-1696

[12] Zhang C, Zheng GL, Shun FX, Dong X. Computational challenges in characterization of bacteria and bacteria-host interaction based genomic data [J]. J Comput Sci Technol, 2012, 27 (2): 225-239

[13] Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut [J]. Appl Environ Microbiol, 1999, 65 (11): 4799-4807

[14] Abdelghani S, Genevieve G, Antonla S, Violaine R, Philippe P, Joel D. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization [J]. Appl Environ Microbiol, 2000, 66 (5): 2263-2266

[15] Hayashi H, Sakamotc M, Benn Y. Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods [J]. Microbiol Immunol, 2002, 46 (8): 535-548

[16] Wang M, Ahrne S, Jeppssob B, Molin G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes [J]. FEMS Microbiol Ecol, 2005, 54 (2):219-231

[17] Lee JE, Lee S, Sung J, Ko G. Analysis of human and animal fecal microbiota for microbial source tracking [J]. Intern Soc Microb Ecol, 2011, 5 (2): 362-365

[18] Wang RF, Cao W, Cemiga CE. Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR con fi rmation [J]. Intern J Syst Bacteriol, 1996, 46 (1): 341-343

[19] Holmstrom K, Collins M D, Moller T, Falsen E, Lawson PA. Subdoligranulum variabile gen. nov. sp. nov. from human feces [J]. Anaerobe, 2004, 10 (3): 197-203

[20] Bemment MF, Brassart D, Neeser JR, Servin AL. Lactobacillus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria [J]. Current issue, 1994, 35 (4): 483-489

[21] Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint H J. The microbiology of butyrate formation in the human colon [J]. Fems Microbiol Lett, 2002, 217 (2): 133-139

[22] 魏华. 不同外源扰动因素对肠道菌群组成结构影响的研究[D]. 上 海: 上海交通大学, 2004 [Wei H. Studies of the structural changes of gut microbiota in response to various perturbations [D]. Shanghai: Shanghai Jiao Tong University, 2004]

[23] Kururoiwa T, Iwanaga M, Kobari K, Higashionna A, Kinjyo F, Saito A. Preventive effect of Clostridium butyricum M588 against the proliferation of Clostridium diffi cile during antimicrobial therapy [J]. Kansenshogaku Zasshi, 1990, 64 (11): 1425-1432

[24] 冯洁, 华 蔚 颖, 赵 立平, 赵宇 峰, 申剑 . 检 测 肠 道 细 菌 Feacalibacterium prausnitzii的三对PCR引物的特异性比较 [J]. 微生物学 报, 2011, 51 (6): 819-827 [Feng J, Hua WY, Zhao LP, Zhao YF, Shen J. Speci fi city comparison of three Feacalibacterium prausnitzii-speci fi c PCR primer pairs [J]. Acta Microbiol Sin, 2011, 51 (6): 819-827]

[25] 冯洁. 人 肠道细菌 Feacalibacterium prausnitzii数量和组成的研 究方法的建立和应用 [D]. 上海: 上海交通大学, 2011 [Feng J. The establishment and applications of the methods to quantify and pro fi le Feacalibacterium prausnitzii in human gut microbiota [D]. Shanghai: Shanghai Jiao Tong University, 2011]

[26] 顾玲, 丁震, 汪华, 陈晓东, 李伟伟, 叶珣, 刘晓阳, 张磊, 林龙, 胡晓 抒. 应用 不同微生物源追踪方法追踪水库中粪便污染来源[J]. 中国 卫生检验杂志, 2010, 20 (2): 249-252 [ Gu L, Ding Z, Wang H, Chen XD, Li WW, Ye X, Liu XY, Zhang L, Lin L, Hu XS. Tracking sources of fecal pollution from reservoir by using two different microbial source tracking methods [J]. Chin J Health Lab Technol, 2010, 20 (2):249-252]

[27] 张 森 .大 肠 杆 菌 rep — PCR指 纹 图 谱 分 析 在 粪 便 污 染 源 示 踪 上 的应用 [D]. 山东 : 山东大学, 2010 [Zhang S. Using The rep- PCR DNA fi ngerprinting analysis of E. coli I as a source tracking tool for detecting fecal contamination [D]. Shandong: Shandong University, 2010]

[28] 冯雯雯, 大连近岸海域微生物源示踪技术的应用研究 [D]. 大连: 大连海事大学, 2011 [Feng WW. Application research on microbial source tracking technology in Dalian beach watershed [D]. Dalian: Dalian Maritime University, 2011]

[29] 于洋, 顾玲, 张婷婷, 王毓, 丁震, 叶王珣, 周璐, 汪华. 微生物源追踪 技术在不同污染水体中的应用评价[J]. 中华疾病控制杂志, 2010, 14 (3): 260-262 [Yu Y, Gu L, Zhang TT, Wang Y, Ding Z, Ye X, Zhou L, Wang H. The application and evaluation of microbial source tracking method in different polluted water [J]. Chin J Dis Control Prevention, 2010, 14 (3): 260-262]

[30] 李伟伟, 陈晓东, 顾玲, 丁震, 汪华. 应用 rep-PCR微生物源方法追踪 夏秋季桂五水库粪便污染来源[J]. 江苏预防医学, 2010, 21 (3): 6-9[Li WW, Chen XD, Gu L, Ding Z, Wang H. Application of rep-PCR microbial source tracking to identify fecal sources in Gui wu reseavoir in the seasons of summer and fall [J]. Jiangsu J Prevention Med, 2010, 21 (3): 6-9]

[31] 程亮. 肠球菌抗生素抗性指纹图谱库的建立及其准确性研究 [D]. 大连: 大连海事大学, 2010 [Chen L. Research on construction and accuracy of Enterococci fi ngerprint database of antibiotic resistance[D]. Dalian: Dalian Maritime University, 2010]

[32] 顾玲, 李伟伟, 丁震, 汪华, 周璐, 董晨, 胡晓抒, 陈晓东 . 水库水非点 源粪便污染微生物源追踪法鉴定 [J]. 中国公共卫生, 2010, 26 (5):644-647 [Gu L, Li WW, Ding, Z, Wang H, Zhou L, Dong C, Hu XS, Chen XD. Use of microbial source tracking to identify non-point fecal pollution in reservior water [J]. Chin J Public Health, 2010, 26 (5):644-647]

[33] 宫强 . 大 肠埃希氏杆 菌 16S—23S rRNA基因间隔区片段分析在 粪便污染源示踪上的应用 [D]. 大连: 大连海事大学, 2005 [Gong Q. Use of 16S一23SrRNA intergenic spacer region PCR analyses of Eschercihai coli isolate to identify fecal sources [D]. Dalian: Dalian Maritime University, 2005]

[34] 蒋翰鹏. 不同动物粪便中大肠杆菌和肠球菌分布规律的研究 [D]. 大连: 大连海事大学, 2009

[35] 崔崇威, 张月红. 水体受粪便污染的分子示踪物(粪醇 )的研究[J]. 哈 尔滨工业大学学报, 2004, 36 (9): 1187-1190 [Cui CW, Zhang YH. The molecular tracer (coprostano1) of faecal pollution in receiving waters[J]. J Harbin Inst Technol, 2004, 36 (9): 1187-1190]

[36] 王耀兵, 苏洁, 杨玉敏, 蒋 翰鹏 . 一种粪便污染源识 别新技术 -微 生物源示踪(Microbial Source Tracking, MST) [J]. 海洋环境科学, 2008, 27 (2): 122-128 [Wang, YB, Su J, Yang, YM, Jiang HP. New technology of identification of fecal pollution — microbial source tracking [J]. Mar Environ Sci, 2008, 27 (2): 122-128]

[37] 李伟伟, 顾玲, 叶珣, 陈晓东, 丁震, 周璐, 董晨, 张琪, 于洋, 汪华. rep-PCR基因指纹图微生物源追踪方法建立的研究 [J]. 现代预防 医学, 2009, 36 (17): 3242-3244 [Li WW, Gu L, Ye X, Chen XD, Ding Z, Zhou L, Dong C, Zhang Q, Yu Y, Wang H. Study on the repetitive extragenic palindromic PCR fi ngerprint analysis as a microblal source tracking [J]. Mod Preventive Med, 2009, 36 (17): 3242-3244]

[38] Langendijk PS, Schut F, Jansen GJ, Raanqs GC, Kamphuis GR, Wilkinson MH, Welling GW. Quantitative f luorescence in situ hybridization of Bi fi dobacterium spp. with genus-speci fi c 16S rRNAtargeted probes and its application in fecal samples [J]. Appl Environ Microbiol, 1995, 61 (8): 3069-3075

[39] Hayashi H, Sakamoto M, Benno Y. Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods [J]. Microbiol Immunol, 2002, 46 (8): 535-548

[40] Hayashi H, Tahahashi R, Nishi T, Sakamoto M, Benno Y. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism [J]. J Med Microbiol, 2005, 54 (11):1093-1101

[41] Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut [J]. Appl Environ Microbiol, 1999, 65 (11): 4799-4807

[42] Woese CR. Bacterial evolution. Microbiol Rev [J], 1987, 51 (2): 221-271

[43] Madign MT, Martinko JM, Parker J. Brock Biology of Microorganisms[M]. 9th ed. Upper Saddle River, New Jersey: Prentice Hall, 2000

[44] Oolsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahi DA. Microbial ecology and evolution: a ribosomal RNA approach [J]. Annu Rev Microbiol, 1986, 40: 337-365

[45] Takahiro M, Koichi W, Junji F, Toshihiko T, Ryuichiro T. Use of 16S rRNA gene-targeted group-speci fi c primers for real-time PCR analysis of predominant bacteria in human feces [J]. Appli Environmental Microbiol, 2004, 70 (12): 7220-7228

[46] Lay C, Sutren M, Rocher V, Saunier K, Dore J, Rigottier GL. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal micro biota [J]. Environ Microbiol, 2005, 7 (7): 933-946