doi:

DOI: 10.3724/SP.J.1088.2013.21281

Chinese Journal of Catalysis (催化学报) 2013/34:4 PP.808-814

Controllable synthesis and photocatalytic properties of hierarchical flower-like TiO2 nanostructure


Abstract:
Hierarchical flower-like TiO2 nanostructure has been successfully synthesized via a modified hydrothermal technique. The effects of the concentrations of H2O2, HNO3, and NaOH, as well as the reaction temperature and time on the morphology of TiO2 have been studied. The morphology, microstructure, and specific surface area of the flower-like TiO2 structure were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and surface area analysis. The photocatalytic activity of the TiO2 obtained under different conditions for degradation of methylene blue dye was investigated by ultraviolet light irradiation. The hierarchical flower-like ana-tase TiO2 nanostructure has a high specific surface area, and exhibits excellent activity in the photocatalytic degradation of methylene blue.

Key words:flower-like titania,hierarchical structure,hydrothermal synthesis,specific surface area,photocatalysis

ReleaseDate:2014-07-24 09:31:46

Funds:Ministry of Science and Technology of China (2011FY130104), the National Science and Technology Pillar Program (2011BAK15B05), and the National Basic Research Program of China (973 Program, 2011CB932802)



1 Tryk D A, Fujishima A, Honda K. Electrochim Acta, 2000, 45: 2363

2 Vidal F J G, Moreno E. Nature, 2009, 461: 604

3 李纲, 刘中清, 张昭, 颜欣. 催化学报(Li G, Liu Zh Q, Zhang Zh, Yan X. Chin J Catal), 2009, 30: 37

4 王后锦, 吴晓婧, 王亚玲, 焦自斌, 颜声威, 黄浪欢. 催化学报(Wang H J, Wu X J, Wang Y L, Jiao Z B, Yan Sh W, Huang L H. Chin J Catal), 2011, 32: 637

5 Chen W, Fan Zh L, Zhang B, Ma G J, Takanabe K, Zhang X X, Lai Zh P. J Am Chem Soc, 2011, 133: 14896

6 Ni Y H, Zhu Y, Ma X. Dalton Trans, 2011, 40: 3689

7 Zhang J, Xu Q, Feng Zh Ch, Li M J, Li C. Angew Chem, Int Ed, 2008, 47: 1766

8 Kuang D B, Uchida S, Humphry-Baker R, Zakeeruddin S M, Grätzel M. Angew Chem, Int Ed, 2008, 47: 1923

9 肖尧明, 吴季怀, 岳根田, 林建明, 黄妙良, 范乐庆, 兰章. 物理化学学报(Xiao Y M, Wu J H, Yue G T, Lin J M. Huang M L, Fan L Q, Lan Zh. Acta Phys-Chim Sin), 2012, 28: 578

10 Buso D, Post M, Cantalini C, Mulvaney P, Martucci A. Adv Funct Mater, 2008, 18: 3843

11 Chen X B, Shen Sh H, Guo L J, Mao S S. Chem Rev, 2010, 110: 6503

12 Xue B, Liu R, Xu Zh D. Mater Lett, 2009, 63: 2377

13 Zhou T F, Hu J Ch. Environ Sci Technol, 2010, 44: 8698

14 Sun Q, Xu Y M. J Phys Chem C, 2010, 114: 18911

15 Liu Y, Chen L F, Hu J Ch, Li J L, Richards R. J Phys Chem C, 2010, 114: 1641

16 Liu M N, Yan Ch, Bell J, Will G. Nanosci Nanotechnol Lett, 2011, 3: 407

17 Wu N Q, Wang J, Tafen D N, Wang H, Zheng J G, Lewis J P, Liu X G, Leonard S S, Manivannan A. J Am Chem Soc, 2010, 132: 6679

18 Liu B, Aydil E S. J Am Chem Soc, 2009, 131: 3985

19 Zorba V, Chen X B, Mao S S. Appl Phys Lett, 2010, 96: 93702

20 Song C X, Wang D B, Xu Y H, Hu Zh Sh. Mater Lett, 2011, 65: 908

21 Yun J, Jin D, Lee Y S, Kim H I. Mater Lett, 2010, 64: 2431

22 Hochbaum A I, Yang P P. Chem Rev, 2010, 110: 527

23 Liu G, Yu J C, Lu G Q, Cheng H M. Chem Commun, 2011, 47: 6763

24 Zhang H J, Wu R F, Chen Zh W, Liu G, Zhang Z N, Jiao Zh. Cryst Eng Commun, 2012, 14: 1775

25 Ko Y H, Leem J W, Yu J S. Nanotechnology, 2011, 22: 205604

26 Li J, Fan H Q, Jia X H. J Phys Chem C, 2010, 114: 14684

27 Xiang G L, Li T Y, Zhuang J,Wang X. Chem Commun, 2010: 6801

28 Sun Z Q, Kim J H, Zhao Y, Bijarbooneh F, Malgras V, Lee Y, Kang Y M, Dou S X. J Am Chem Soc, 2011, 133: 19314

29 相国磊, 王训. 无机化学学报(Xiang G L,Wang X. Chin J Inorg Chem), 2011, 27: 2323

30 Penn R L, Banfield J F. Science, 1998, 281: 969

31 Banfield J F, Welch S A, Zhang, H Z, Ebert T T, Penn R L. Science, 2000, 289: 751

32 Xiang G L, Wu D, He J, Wang X. Chem Commun, 2011, 47: 11456

33 Tao F F, Shen Y M, Wang L X. Molecules, 2012, 17: 703

PDF