doi:

DOI: 10.3724/SP.J.1005.2008.00953

Hereditas (Beijing) (遗传) 2008/30:8 PP.953-959

Roles of TGF-βsuperfamily in the genesis, development and maintenance of cartilage


Abstract:
The transforming growth factor β(TGF-β) superfamily is composed of TGF-β subfamily and bone morphogenetic protein (BMP) subfamily. The ligands, ligand antagonists, receptors and intracellular transductors that engage in the TGF-β superfamily signaling pathway play their unique roles during endochondral ossification via regulating the lineage differentiation, proliferation, maturation, apoptosis and mineralization of chondrocytes. BMP signaling dominates chondrogenesis through initiating the chondrocytic commitment of mesenchymal cells and maintaining the chondrocytic phenotype. During the development of growth plate, BMP signaling promotes the maturation of chondrocytes to facilitate ossification, whereas TGF-β signaling inhibits the hypertrophic differentiation to preserve adequate chondrocytes within the growth plate. Both TGF-β signaling and BMP signaling are indispensable for the maintenance and repair of articular cartilage. Therefore, it indicates that TGF-β superfamily may function essentially all throughout the development of skele-tons.

Key words:TGF-β,BMP,cartilage,endochondral ossification,bone development

ReleaseDate:2014-07-21 14:13:01

Funds:Supported by the National Natural Science Foundation of China (No. 30430350)



[1]Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell, 2002, 2(4): 389-406.

[2]Kronenberg HM. Developmental regulation of the growth plate. Nature, 2003, 423(6937): 332-336.

[3]Derynck R, Zhang YE. Smad-dependent and Smad- independent pathways in TGF-beta family signalling. Nature, 2003, 425(6958): 577-584.

[4]Gazzerro E, Canalis E. Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord, 2006, 7(1-2): 51-65.

[5]Zelzer E, Olsen BR. The genetic basis for skeletal diseases. Nature, 2003, 423(6937): 343-348.

[6]Haas AR, Tuan RS. Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: II. Stimulation by bone morphogenetic protein-2 requires modulation of N-cadherin expression and function. Differentiation, 1999, 64(2): 77-89.

[7]Pizette S, Niswander L. BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev Biol, 2000, 219(2): 237-249.

[8]Capdevila J, Johnson RL. Endogenous and ectopic expression of noggin suggests a conserved mechanism for regulation of BMP function during limb and somite patterning. Dev Biol, 1998, 197(2): 205-217.

[9]Ikeda T, Kawaguchi H, Kamekura S, Ogata N, Mori Y, Nakamura K, Ikegawa S, Chung UI. Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J Bone Miner Metab, 2005, 23(5): 337-340.

[10]Barna M, Niswander L. Visualization of cartilage formation: insight into cellular properties of skeletal progenitors and chondrodysplasia syndromes. Dev Cell, 2007, 12(6): 931-941.

[11]Majumdar MK, Wang E, Morris EA. BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol, 2001, 189(3): 275-284.

[12]Chimal-Monroy J, Rodriguez-Leon J, Montero JA, Ganan Y, Macias D, Merino R, Hurle JM. Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. Dev Biol, 2003, 257(2): 292-301.

[13]Uusitalo H, Hiltunen A, Ahonen M, Gao TJ, Lefebvre V, Harley V, Kahari VM, Vuorio E. Accelerated up- regulation of L-Sox5, Sox6, and Sox9 by BMP-2 gene transfer during murine fracture healing. J Bone Miner Res, 2001, 16(10): 1837-1845.

[14]Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci USA, 2005, 102(14): 5062-5067.

[15]Yoon BS, Lyons KM. Multiple functions of BMPs in chondrogenesis. J Cell Biochem, 2004, 93(1): 93-103.

[16]Yi SE, Daluiski A, Pederson R, Rosen V, Lyons KM. The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development (Cambridge, England), 2000, 127(3): 621-630.

[17]Stanton LA, Underhill TM, Beier F. MAP kinases in chondrocyte differentiation. Dev Biol, 2003, 263(2): 165-175.

[18]Hoffman LM, Weston AD, Underhill TM. Molecular mechanisms regulating chondroblast differentiation. J Bone Joint Surg Am, 2003, 85-A Suppl 2:124-132.

[19]Hoffman LM, Garcha K, Karamboulas K, Cowan MF, Drysdale LM, Horton WA, Underhill TM. BMP action in skeletogenesis involves attenuation of retinoid signaling. J Cell Biol, 2006, 174(1): 101-113.

[20]Reinhold MI, Abe M, Kapadia RM, Liao Z, Naski MC. FGF18 represses noggin expression and is induced by calcineurin. J Biol Chem, 2004, 279(37): 38209-38219.

[21]Kolpakova E, Olsen BR. Wnt/beta-catenin-a canonical tale of cell-fate choice in the vertebrate skeleton. Dev Cell, 2005, 8(5): 626-627.

[22]Yates KE, Shortkroff S, Reish RG. Wnt influence on chondrocyte differentiation and cartilage function. DNA Cell Biol, 2005, 24(7): 446-457.

[23]Jin EJ, Lee SY, Choi YA, Jung JC, Bang OS, Kang SS. BMP-2-enhanced chondrogenesis involves p38 MAPK- mediated down-regulation of Wnt-7a pathway. Mol Cells, 2006, 22(3): 353-359.

[24]Zeng L, Kempf H, Murtaugh LC, Sato ME, Lassar AB. Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev, 2002, 16(15): 1990-2005.

[25]Seo HS, Serra R. Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints. Dev Biol, 2007, 310(2): 304-316.

[26]Baffi MO, Slattery E, Sohn P, Moses HL, Chytil A, Serra R. Conditional deletion of the TGF-beta type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev Biol, 2004, 276(1): 124-142.

[27]Enomoto-Iwamoto M, Iwamoto M, Mukudai Y, Kawakami Y, Nohno T, Higuchi Y, Takemoto S, Ohuchi H, Noji S, Kurisu K. Bone morphogenetic protein signaling is required for maintenance of differentiated phenotype, control of proliferation, and hypertrophy in chondrocytes. J Cell Biol, 1998, 140(2): 409-418.

[28]Grimsrud CD, Romano PR, D'Souza M, Puzas JE, Schwarz EM, Reynolds PR, Roiser RN, O'Keefe RJ. BMP signaling stimulates chondrocyte maturation and the expression of Indian hedgehog. J Orthop Res, 2001, 19(1): 18-25.

[29]Valcourt U, Gouttenoire J, Moustakas A, Herbage D, Mallein-Gerin F. Functions of transforming growth factor- beta family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes. J Biol Chem, 2002, 277(37): 33545-33558.

[30]Grimsrud CD, Romano PR, D'Souza M, Puzas JE, Reynolds PR, Rosier RN, O'Keefe RJ. BMP-6 is an autocrine stimulator of chondrocyte differentiation. J Bone Miner Res, 1999, 14(4): 475-482.

[31]Kobayashi T, Lyons KM, McMahon AP, Kronenberg HM. BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci USA, 2005, 102(50): 18023-18027.

[32]Tsumaki N, Nakase T, Miyaji T, Kakiuchi M, Kimura T, Ochi T, Yoshikawa H. Bone morphogenetic protein signals are required for cartilage formation and differently regulate joint development during skeletogenesis. J Bone Miner Res, 2002, 17(5): 898-906.

[33]Schmidl M, Adam N, Surmann-Schmitt C, Hattori T, Stock M, Dietz U, de Crombrugghe B, Poschl E, von der Mark K. Twisted gastrulation modulates bone morphogenetic protein-induced collagen II and X expression in chondrocytes in vitro and in vivo. J Biol Chem, 2006, 281(42): 31790-31800.

[34]Duprez D, Bell EJ, Richardson MK, Archer CW, Wolpert L, Brickell PM, Francis-West PH. Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech Dev, 1996, 57(2): 145-157.

[35]Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, Vortkamp A. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development (Cambridge, England), 2001, 128(22): 4523-4534.

[36]Reilly GC, Golden EB, Grasso-Knight G, Leboy PS. Differential effects of ERK and p38 signaling in BMP-2 stimulated hypertrophy of cultured chick sternal chondrocytes. Cell Commun Signal, 2005, 3(1): 3.

[37]Li X, Ionescu AM, Schwarz EM, Zhang X, Drissi H, Puzas JE, Rosier RN, Zuscik MJ, O'Keefe RJ. Smad6 is induced by BMP-2 and modulates chondrocyte differentiation. J Orthop Res, 2003, 21(5): 908-913.

[38]Shen R, Chen M, Wang YJ, Kaneki H, Xing L, O'Keefe R J, Chen D. Smad6 interacts with Runx2 and mediates Smad ubiquitin regulatory factor 1-induced Runx2 degradation. J Biol Chem, 2006, 281(6): 3569-3576.

[39]Horiki M, Imamura T, Okamoto M, Hayashi M, Murai J, Myoui A, Ochi T, Miyazono K, Yoshikawa H, Tsumaki N. Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia. J Cell Biol, 2004, 165(3): 433-445.

[40]Tchetina EV, Antoniou J, Tanzer M, Zukor DJ, Poole AR. Transforming growth factor-beta2 suppresses collagen cleavage in cultured human osteoarthritic cartilage, reduces expression of genes associated with chondrocyte hypertrophy and degradation, and increases prostaglandin E(2) production. Am J Pathol, 2006, 168(1): 131-140.

[41]Alvarez J, Horton J, Sohn P, Serra R. The perichondrium plays an important role in mediating the effects of TGF-beta1 on endochondral bone formation. Dev Dyn, 2001, 221(3): 311-321.

[42]Dabovic B, Chen Y, Colarossi C, Zambuto L, Obata H, Rifkin DB. Bone defects in latent TGF-beta binding protein (Ltbp)-3 null mice; a role for Ltbp in TGF-beta presentation. J Endocrinol, 2002, 175(1): 129-141.

[43]Yang X, Chen L, Xu X, Li C, Huang C, Deng CX. TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol, 2001, 153(1): 35-46.

[44]Wu Q, Wang M, Zuscik MJ, Chen D, O'Keefe RJ, Rosier RN. Regulation of embryonic endochondral ossification by Smurf2. J Orthop Res, 2008.

[45]Zhang J, Tan X, Li W, Wang Y, Wang J, Cheng X, Yang X. Smad4 is required for the normal organization of the cartilage growth plate. Dev Biol, 2005, 284(2): 311-322.

[46]Rountree RB, Schoor M, Chen H, Marks ME, Harley V, Mishina Y, Kingsley DM. BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol, 2004, 2(11): e355.

[47]Settle SH Jr, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM. Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol, 2003, 254(1): 116-130.

[48]Nakayama N, Han CY, Cam L, Lee JI, Pretorius J, Fisher S, Rosenfeld R, Scully S, Nishinakamura R, Duryea D, Van G, Bolon B, Yokota T, Zhang K. A novel chordin-like BMP inhibitor, CHL2, expressed preferentially in chondrocytes of developing cartilage and osteoarthritic joint cartilage. Development (Cambridge, England), 2004, 131(1): 229-240.

[49]Zhang D, Ferguson CM, O'Keefe RJ, Puzas JE, Rosier RN, Reynolds PR. A role for the BMP antagonist chordin in endochondral ossification. J Bone Miner Res, 2002, 17(2): 293-300.

[50]Lories RJ, Daans M, Derese I, Matthys P, Kasran A, Tylzanowski P, Ceuppens JL, Luyten FP. Noggin haploinsufficiency differentially affects tissue responses in destructive and remodeling arthritis. Arthritis Rheum, 2006, 54(6): 1736-1746.

[51]Blaney Davidson EN, Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Res Ther, 2005, 7(6): R1338-1347.

[52]Serra R, Johnson M, Filvaroff EH, LaBorde J, Sheehan DM, Derynck R, Moses HL. Expression of a truncated, kinase- defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol, 1997, 139(2): 541-552.

[53]Yao JY, Wang Y, An J, Mao CM, Hou N, Lv YX, Wang YL, Cui F, Huang M, Yang X. Mutation analysis of the Smad3 gene in human osteoarthritis. Eur J Hum Genet, 2003, 11(9): 714-717.

[54]Roman-Blas JA, Stokes DG, Jimenez SA. Modulation of TGF-beta signaling by proinflammatory cytokines in articular chondrocytes. Osteoarthritis Cartilage, 2007, 15(12): 1367-1377.

[55]Lum ZP, Hakala BE, Mort JS, Recklies AD. Modulation of the catabolic effects of interleukin-1 beta on human articular chondrocytes by transforming growth factor-beta. J Cel Physiol, 1996, 166(2): 351-359.

[56]Qureshi HY, Ahmad R, Sylvester J, Zafarullah M. Requirement of phosphatidylinositol 3-kinase/Akt signaling pathway for regulation of tissue inhibitor of metalloproteinases-3 gene expression by TGF-beta in human chondrocytes. Cell Signal, 2007, 19(8): 1643-1651.

[57]Fukui N, Zhu Y, Maloney WJ, Clohisy J, Sandell LJ. Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes. J Bone Joint Surg Am, 2003, 85-A Suppl 3: 59-66.

[58]Bobacz K, Gruber R, Soleiman A, Erlacher L, Smolen JS, Graninger WB. Expression of bone morphogenetic protein 6 in healthy and osteoarthritic human articular chondrocytes and stimulation of matrix synthesis in vitro. Arthritis Rheum, 2003, 48(9): 2501-2508.

[59]Nochi H, Sung JH, Lou J, Adkisson HD, Maloney WJ, Hruska KA. Adenovirus mediated BMP-13 gene transfer induces chondrogenic differentiation of murine mesenchymal progenitor cells. J Bone Miner Res, 2004, 19(1): 111-122.

[60]Lafont JE, Talma S, Hopfgarten C, Murphy CL. Hypoxia promotes the differentiated human articular chondrocyte phenotype through SOX9-dependent and -independent pathways. J Biol Chem, 2008, 283(8): 4778-4786.

[61]Sugimori K, Matsui K, Motomura H, Tokoro T, Wang J, Higa S, Kimura T, Kitajima I. BMP-2 prevents apoptosis of the N1511 chondrocytic cell line through PI3K/Akt- mediated NF-kappaB activation. J Bone Miner Metab, 2005, 23(6): 411-419.

PDF