doi:

DOI: 10.3724/SP.J.1005.2010.00625

Hereditas (Beijing) (遗传) 2010/32:6 PP.625-631

SSR linkage map construction and QTL mapping for leaf area in maize


Abstract:
Maize (Zea mays L.) leaf is the main organ for photosynthesis. The area of leaves (especially the ear-leaf and the two leaves above and below the ear-leaf) plays a vital role in dry matter accumulation and grain yield. Therefore, genetic information on leaf area has a theoretical significance for breeding maize with high yield. In this study, a genetic linkage map composing of 184 simple sequence repeat (SSR) markers was constructed based on an F8 recombinant inbred line (RIL) population, which was derived from a cross between 478 and W312. The parents showed a significant difference in leaf area. The map covers 2084.1 cM with an average interval of 11.3 cM. QTLs for leaf area were identified under two-year’s field experiments. Totally 7 QTLs were detected in two years, among which 4 QTLs were detected in 2006 and 3 QTLs in 2007. A major QTL on chromosome 2 (between umc1542 and umc1518) were detected in both 2006 and 2007. It explains 12.5% and 17.3% of the phenotypic variation, respectively. This locus can be used as a potental marker for improving maize leaf growth through marker assisted selection (MAS) approach.

Key words:maize,leaf area,simple sequence repeats (SSR),quantitative trait locus (QTL)

ReleaseDate:2014-07-21 15:21:45



[1] 袁隆平. 杂交水稻超高产育种. 杂交水稻, 1997, 12(6): 1-6.

[2] 赵久然. 超级玉米指标及选育模式. 玉米科学, 2005, 13(1): 3-4, 9.

[3] 吕川根, 邹江石. 两个超级杂交稻与汕优63光合株型的比较分析. 中国农业科学, 2003, 36(6): 633-639.

[4] 赵久然, 孙世贤. 对超级玉米育种目标及技术路线的再思考. 玉米科学, 2007, 15(1): 21-23, 28.

[5] 杨松, 陈强, 刘俊林, 杨文彬. 超吨粮田中玉米植株形状与穗粒重的关系. 华北农学报, 1994, 9(3): 112-116.

[6] 白永新, 王早荣, 钟改荣, 郭还威. 玉米高配合力亲本自交系、杂交种棒三叶的形状分析及叶面积的相关性研究. 玉米科学, 1999, 7(2): 24-26.

[7] 白永新, 王早荣, 陈宝国, 钟改荣, 张中东, 卢桂花. 玉米杂交种棒三叶特征及其叶面积与单株穗重、粒重的相关性研究. 华北农学报, 2000, 15(2): 32-35.

[8] 陈永欣, 翟广谦, 李彦良, 王计虎. 糯玉米自交系、杂交种棒三叶与产量之间相关性分析. 玉米科学, 2001, 9(2): 50-52.

[9] 陈范骏, 米国华, 张福锁. 玉米氮高效组合杂种优势分析. 玉米科学, 2006, 14(4): 125-128.

[10] Lafitte HR and Edmeades GO. Improvement for tolerance to low soil nitrogen in tropical maize. II. Grain yield, biomass production, and N accumulation. Field Crops Res, 1994, 39(1): 15-25.

[11] Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epis-tasis of QTL×environment interaction on the develop-mental behavior of plant height in rice (Orza sa-tiva L.). Theor Appl Genet, 2001, 103(1): 153-160.

[12] Ma XQ, Tang JH, Teng HT, Yang JB, Meng YJ, Li JS. Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed, 2007, 20(1): 41-51.

[13] An DG, Su JY, Liu QY, Zhu YG, Tong YP, Li JM, Jing RL, Lin B, Li ZS. Mapping QTLs for nitrogen uptake in rela-tion to the early growth of wheat (Triticum aesti-vum L.). Plant Soil, 2006, 284(1-2): 73-84.

[14] Kobayashi S, Fukata Y, Morita S, Osaki M, Khush GS. Quantitative trait loci affecting flag leaf development in rice (Oryza sativa L.). Breed Sci, 2003, 53(3): 255-262.

[15] 沈波, 庄杰云, 张克勤, 夏奇清, 盛晨霞, 郑康乐. 水稻叶片性状和根系活力的QTL定位. 遗传学报, 2003, 30(12): 1133-1139.

[16] 王一平, 曾建平, 郭龙彪, 刑永忠, 徐才国, 梅捍卫, 应存山, 罗利军. 水稻顶部三叶与穗重的关系及其QTL分析. 中国水稻科学, 2004, 19(1): 13-20.

[17] Yue B, Xue WY, Luo LJ, Xing YZ. QTL analysis flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Genet Sin, 2006, 33(9): 824-832.

[18] Cao GQ, Gao YM, Zhu J. QTL analysis for flag leaf length in a rice DH population under multi environments. Acta Agron Sin, 2007, 33(2): 223-229.

[19] 罗伟, 胡江, 孙川, 陈刚, 姜华, 曾大力, 高振宇, 张光恒, 郭龙彪, 李仕贵, 钱前. 水稻抽穗期功能叶叶型相关性状遗传分析. 分子植物育种, 2008, 6(5): 853-860.

[20] Zeng DL, Hu J, Dong GJ, Liu J, Zeng LJ, Zhang GH, Guo LB, Zhou YH, Qian Q. Quantitative trait loci mapping of flag-leaf ligule length in rice and alignment with ZmLG1 gene. J Intergr Plant Biol, 2009, 51(4): 360-366.

[21] Agrama HAS, Zakaria AG, Said FB, Tuinstra M. Identifi-cation of quantitative trait loci for nitrogen use efficiency in maize. Mol Breed, 1999, 5(2): 187-195.

[22] Hallauer AR, Miranda FJB. Quantitative Genetics in Maize Breeding. Ames: Iowa State University Press, 1981.

[23] Li HH, Ye GY, Wang JK. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175(1): 361-374.

[24] 杨俊品, 荣廷昭, 黄烈健, 唐海涛, 向道权, 戴景瑞. 玉米分子遗传框架图谱构建. 作物学报, 2004, 30(1): 82-87.

[25] 赵茂俊, 张志明, 高世斌, 李晚忱, 荣廷昭, 潘光堂. 玉米抗纹枯病QTL定位. 作物学报, 2006, 32(5): 698-702.

[26] 路明, 周芳, 谢传晓, 李明顺, 徐云碧, Marilyn War-burton, 张世煌. 玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析. 遗传, 2007, 29(9): 1131-1138.

[27] Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol, 1997, 35(1-2): 145-153.

[28] 兰进好, 张宝石. 玉米分子遗传图谱的SSR和AFLP标记构建. 西北农林科技大学学报(自然科学版), 2004, 32(12): 28-32.

[29] Liu DC, Gao MQ, Guan RX, Li RZ, Cao SH, Guo XL, Zhang AM. Mapping quantitative trait loci for plant height in wheat (Triticum aestivum L.) using a F2-3 population. Acta Genet Sin, 2002, 29(8): 706-711.

[30] Sun Y, Zhang W, Li FL, Guo YL, Liu TL, Huang H. Iden-tification and genetic mapping of four novel genes that regulate leaf development in Arabidopsis. Cell Res, 2000, 10(4): 325-335.

[31] Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ for-mation. Cell, 2003, 115(5): 591-602.

[32] Shi YF, Chen J, Liu WQ, Huang QN, Shen B, Leung H, Wu JL. Genetic analysis and gene mapping of a new rolled-leaf mutant in rice (Oryza sativa L.). Sci China Ser C, 2009, 52(9): 885-890.

PDF