doi:

DOI: 10.3724/SP.J.1005.2011.00025

Hereditas (Beijing) (遗传) 2011/33:1 PP.25-35

Current status of genome-wide association study


Abstract:
In past five years, genome-wide association study (GWAS) has proven to be a powerful and efficient study design in identifying genetic variants associated with complex diseases and traits. Many studies have been performed to explore the genetic basis of various complex diseases and traits. Genetic breakthroughs have been achieved in complex diseases and traits, such as oncology, diabetes, cardiology, psychiatric disorders, autoimmune and immune related diseases, height, weight, blood lipid, and pigmentation. Up to September 11th 2010, nearly 200 complex diseases and traits have been investigated by this approach, and more than 3000 diseases and/or traits related variants have been identified. In this review, we present an overview of GWAS in complex diseases and traits.

Key words:genome-wide association,complex diseases,traits,susceptibility gene

ReleaseDate:2014-07-21 15:42:20



[1] Göring HH, Terwilliger JD, Blangero J. Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet, 2001, 69(6): 1357-1369.

[2] Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet, 1995, 11(3): 241-247.

[3] Sabatti C, Service S, Freimer N. False discovery rate in linkage and association genome screens for complex dis-orders. Genetics, 2003, 164(2): 829-833.

[4] Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science, 1996, 273(5281): 1516-1517.

[5] Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA. A second generation hu-man haplotype map of over 3.1 million SNPs. Nature, 2007, 449(7164): 851-861.

[6] Steemers FJ, Gunderson KL. Whole genome genotyping technologies on the BeadArray platform. Biotechnol J, 2007, 2(1): 41-49.

[7] Kennedy GC, Matsuzaki H, Dong SL, Liu WM, Huang J, Liu GY, Su X, Cao MQ, Chen WW, Zhang J, Liu WW, Yang G, Di XJ, Ryder T, He ZJ. Large-scale genotyping of complex DNA. Nat Biotechnol, 2003, 21(10): 1233-1237.

[8] Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS. A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet, 2005, 37(5): 549-554.

[9] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81(3): 559-575.

[10] Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science, 2005, 308(5720): 385-389.

[11] Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand WH, Samani NJ, Todd JA. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 2007, 447(7145): 661-678.

[12] Hindorff L, Junkins H, Mehta J, Manolio T. A catalog of published Genome-Wide Association Studies. Available at: www.genome.gov/gwastudies.

[13] Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, Bailey R, Nejentsev S, Field SF, Payne F, Lowe CE, Szeszko JS, Hafler JP, Zeitels L, Yang JH. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet, 2007, 39(7): 857-864.

[14] Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, Glessner JT, Grabs R, Casalunovo T, Taback SP, Frackelton EC, Lawson ML, Robinson LJ. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature, 2007, 448(7153): 591-594.

[15] Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med, 2009, 360(16): 1646-1654.

[16] Grant SF, Hakonarson H. Genome-wide association studies in type 1 diabetes. Curr Diab Rep, 2009, 9(2): 157-163.

[17] Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet, 2006, 38(3): 320-323.

[18] Cauchi S, El Achhab Y, Choquet H, Dina C, Krempler F, Weitgasser R, Nejjari C, Patsch W, Chikri M, Meyre D, Froguel P. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med, 2007, 85(7): 777-782.

[19] Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, Charpentier G. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 2007, 445(7130): 881-885.

[20] Salonen JT, Uimari P, Aalto JM, Pirskanen M, Kaikkonen J, Todorova B, Hypponen J, Korhonen VP, Asikainen J, Devine C, Tuomainen TP, Luedemann J, Nauck M, Kerner W, Stephens RH. Type 2 diabetes whole-genome associa-tion study in four populations: the DiaGen consortium. Am J Hum Genet, 2007, 81(2): 338-345.

[21] Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S, Baker A, Snor-radottir S, Bjarnason H. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet, 2007, 39(6): 770-775.

[22] Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jack-son AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu TL, Pruim R. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 2007, 316(5829): 1341-1345.

[23] McCarthy MI, Zeggini E. Genome-wide association studies in type 2 diabetes. Curr Diab Rep, 2009, 9(2): 164-171.

[24] Mueller PW. Technologies for diabetes genomics. J Diabetes Sci Technol, 2009, 3(4): 735-738.

[25] Hirschhorn JN, Lettre G. Progress in genome-wide association studies of human height. Horm Res, 2009, 71(Suppl 2): 5-13.

[26] Loos RJ. Recent progress in the genetics of common obesity. Br J Clin Pharmacol, 2009, 68(6): 811-829.

[27] Tai ES, Ordovas JM. Genome-wide association studies for blood lipids. A great start but a long way to go. Curr Opin Lipidol, 2010, 21(2): 101-103.

[28] Sturm RA. Molecular genetics of human pigmentation diversity. Hum Mol Genet, 2009, 18(R1): R9-R17.

[29] Choi HK, Zhu Y, Mount DB. Genetics of gout. Curr Opin Rheumatol, 2010, 22(2): 144-151.

[30] Ferrari S. Human genetics of osteoporosis. Best Pract Res Clin Endocrinol Metab, 2008, 22(5): 723-735.

[31] Weiss ST. Lung function and airway diseases. Nat Genet, 2010, 42(1): 14-16.

[32] Benjamin EJ, Dupuis J, Larson MG, Lunetta KL, Booth SL, Govindaraju DR, Kathiresan S, Keaney JF, Jr., Keyes MJ, Lin JP, Meigs JB, Robins SJ, Rong J, Schnabel R. Genome-wide association with select biomarker traits in the Framingham Heart Study. BMC Med Genet, 2007, 8(Suppl 1): S11.

[33] Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 2007, 316(5826): 889-894.

[34] Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orrú M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet, 2007, 3(7): e115.

[35] Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, Han-kinson SE, Hu FB, Duffy DL, Zhao ZZ, Martin NG, Montgomery GW, Hayward NK, Thomas G, Hoover RN, Chanock S, Hunter DJ. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet, 2008, 4(5): e1000074.

[36] Bishop DT, Demenais F, Iles MM, Harland M, Taylor JC, Corda E, Randerson-Moor J, Aitken JF, Avril MF, Azizi E, Bakker B, Bianchi-Scarrá G. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet, 2009, 41(8): 920-925.

[37] Jin Y, Birlea SA, Fain PR, Gowan K, Riccardi SL, Holland PJ, Mailloux CM, Sufit AJ, Hutton SM, Amadi-Myers A, Bennett DC, Wallace MR. Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med, 2010, 362(18): 1686-1697.

[38] Gudbjartsson DF, Sulem P, Stacey SN, Goldstein AM, Rafnar T, Sigurgeirsson B, Benediktsdottir KR, Thorisdot-tir K, Ragnarsson R, Sveinsdottir SG, Magnusson V, Lind-blom A, Kostulas K. ASIP and TYR pig-mentation variants associate with cutaneous melanoma and basal cell carcinoma. Nat Genet, 2008, 40(7): 886-891.

[39] Need AC, Goldstein DB. Whole genome association studies in complex diseases: where do we stand? Dialogues Clin Neurosci, 2010, 12(1): 37-46.

[40] Daly AK. Pharmacogenetics and human genetic polymor-phisms. Biochem J, 2010, 429(3): 435-449.

[41] O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, Nikolov I, Hamshere M, Carroll L, Georgieva L, Dwyer S, Holmans P, Marchini JL, Spencer CC, Howie B, Leung HT. Identification of loci associated with schizophrenia by genome-wide association and fol-low-up. Nat Genet, 2008, 40(9): 1053-1055.

[42] de Cid R, Riveira-Munoz E, Zeeuwen PL, Robarge J, Liao W, Dannhauser EN, Giardina E, Stuart PE, Nair R, Helms C, Escaramís G, Ballana E. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat Genet, 2009, 41(2): 211-215.

[43] Zhang XJ, Huang W, Yang S, Sun LD, Zhang FY, Zhu QX, Zhang FR, Zhang C, Du WH, Pu XM, Li H, Xiao FL, Wang ZX, Cui Y, Hao F. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet, 2009, 41(2): 205-210.

[44] Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, Xu JH, Cai ZM, Huang W, Zhao GP, Xie HF, Fang H, Lu QJ, Xu JH, Li XP, Pan YF, Deng DQ. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet, 2009, 41(11): 1234-1237.

[45] Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, Ortmann W, Kosoy R, Ferreira RC, Nordmark G, Gunnarsson I, Svenungsson E. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet, 2009, 41(11): 1228-1233.

[46] Yang W, Shen N, Ye DQ, Liu Q, Zhang Y, Qian XX, Hi-rankarn N, Ying D, Pan HF, Mok CC, Chan TM, Wong RW, Lee KW, Mok MY, Wong SN. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with sys-temic lupus erythematosus. PLoS Genet, 2010, 6(2): e1000841.

[47] Zhang FR, Huang W, Chen SM, Sun LD, Liu H, Li Y, Cui Y, Yan XX, Yang HT, Yang RD, Chu TS, Zhang C, Zhang L, Han JW, Yu GQ, Quan C. Genomewide association study of leprosy. N Engl J Med, 2009, 361(27): 2609-2618.

[48] Le Bourhis L, Benko S, Girardin SE. Nod1 and Nod2 in innate immunity and human inflammatory disorders. Biochem Soc Trans, 2007, 35(Pt 6): 1479-1484.

[49] Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet, 2008, 40(8): 955-962.

[50] Quan C, Ren YQ, Xiang LH, Sun LD, Xu AE, Gao XH, Chen HD, Pu XM, Wu RN, Liang CZ, Li JB, Gao TW, Zhang JZ, Wang XL, Wang J. Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat Genet, 2010, 42(7): 614-618.

[51] Bei JX, Li Y, Jia WH, Feng BJ, Zhou G, Chen LZ, Feng QS, Low HQ, Zhang H, He F, Tai ES, Kang T, Liu ET, Liu J, Zeng YX. A genome-wide association study of naso-pharyngeal carcinoma identifies three new susceptibility loci. Nat Genet, 2010, 42(7): 599-603.

[52] Zhang HX, Zhai Y, Hu ZB, Wu C, Qian J, Jia WH, Ma FC, Huang WF, Yu LX, Yue W, Wang ZF, Li PY, Zhang Y, Li-ang RX, Wei ZL, Cui Y, Xie WM. Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat Genet, 2010, 42(9): 755-758.

[53] Wang LD, Zhou FY, Li XM, Sun LD, Song X, Jin Y, Li JM, Kong GQ, Qi H, Cui J, Zhang LQ, Yang JZ, Li JL, Li XC, Ren JL, Liu ZC, Gao WJ, Yuan L. Genome-wide association study of esophageal squamous cell carcinoma in Chi-nese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet, 2010, 42(9): 759-763.

[54] Sun LD, Cheng H, Wang ZX, Zhang AP, Wang PG, Xu JH, Zhu QX, Zhou HS, Ellinghaus E, Zhang FR, Pu XM, Yang XQ, Zhang JZ, Xu AE, Wu RN, Xu LM, Peng L. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet. 2010, 42(11): 1005-1009.

PDF