DOI: 10.3724/SP.J.1005.2012.00848

Hereditas (Beijing) (遗传) 2012/34:7 PP.848-858

Progress on nitrogen regulation gene expression of plant pathogenic fungi under nitrogen starvation

It has been confirmed that the occurrence of plant disease is caused by the effector molecules secreted by plant pathogens. The regulation effector gene expression is an important aspect in understanding of the infection process. The nutritional status of cells has been postulated to be a vital role for effector gene expression. Studies have indicated that the induction of the same effecter genes during growth in vitro as those during growth in planta under nitrogen-starved conditions. This showed that the nitrogen poor environment existed in the early time of plant evolution. This paper describes the system in the pathogenesis of several fungal pathogens and nitrogen in the process of gene expression effects from the results of several species by comparing and contrasting the function of nitrogen regulatory genes, as well as by studying plants in vivo and in vitro gene under nitrogen limitation inductive effect in order to reveal the effectiveness of nitrogen in the development process of host plant disease is an important factor.

Key words:pathogenic fungi,nitrogen metabolism,nitrogen-regulated gene

ReleaseDate:2014-07-21 16:18:43

[1] van Baarlen P, van Belkum A, Thomma BPHJ. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects. Drug Discov Today, 2007, 12(3-4): 167-173.

[2] Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006, 124(4): 803-814.

[3] Dangl JL. Nibbling at the plant cell nucleus. Science, 2007, 315(5815): 1088-1089.

[4] Kamoun S. Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol, 2007, 10(4): 358-365.

[5] Baldwin TK, Winnenburg R, Urban M, Rawlings C, Koehler J, Hammond-Kosack KE. The pathogen-host in-teractions database (PHI-base) provides insights into generic and novel themes of pathogenicity. Mol Plant Microbe Interact, 2006, 19(12): 1451-1462.

[6] van der Does HC, Rep M. Virulence genes and the evolution of host specificity in plant-pathogenic fungi. Mol Plant Microbe Interact, 2007, 20(10): 1175-1182.

[7] Bolton MD, van Esse HP, Vossen JH, de Jonge R, Stule-meijer IJE, Stergiopoulos I, Stulemeijer IJE, van Den Berg GCM, Borrás-Hidalgo O, Dekker HL, De Koster CG, De Wit PJGM, Joosten MHAJ, Thomma BPHJ. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol Microbiol, 2008, 69(1): 119-136.

[8] Bolton MD, Thomma BPHJ, Nelson BD. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol, 2006, 7(1): 1-16.

[9] van Esse HP, Bolton MD, Stergiopoulos I, de Wit PJGM, Thomma BPHJ. The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Mol Plant Microbe Interact, 2007, 20(9): 1092-1101.

[10] van Esse HP, van’t Klooster JW, Bolton MD, Yadeta K, van Baarlen P, Boeren S, Vervoort J, de Wita PJGM, Thommaa BPHJ. The Cladosporium fulvum viru-lence protein Avr2 inhibits host proteases required for basal defense. Plant Cell, 2008, 20(7): 1948-1963.

[11] Rooney HC, van’t Klooster JW, van der Hoorn RAL, Joosten MHAJ, Jones JDG, de Wit PJGM. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science, 2005, 308(5729): 1783-1786.

[12] Bahn YS, Xue C, Indurnm A, Rutherford JC, Heitman J, Cardenas ME. Sensing the environment: lessons from fungi. Nat Rev Microbiol, 2007, 5(1): 57-69.

[13] Talbot NJ, Ebbole DJ, Hamer JE. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 1993, 5(11): 1575-1590.

[14] van den Ackerveken GFJM, Dunn RM, Cozijnsen AJ, Vossen JP, van den Broek HW, de Wit PJGM. Nitrogen limitation induces expression of the avirulence gene avr9 in the tomato pathogen Cladosporium fulvum. Mol Gen Genet, 1994, 243(3): 277-285.

[15] Benthin S, Schulze U, Nielsen J, Villadsen J. Growth en-ergetics of Lactococcus cremoris FD1 during en-ergy-, carbon-, and nitrogen-limitation in steady state and transient cultures. Chem Eng Sci, 1994, 49(5); 589-609.

[16] Talbot NJ, McCafferty HRK, Ma M, Moore K, Hamer JE. Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression. Physiol Mol Plant Pathol, 1997, 50(3): 179-195.

[17] Donofrio NM, Oh Y, Lundy R, Pan H, Brown DE, Jeong JS, Coughlan S, Mitchell TK, Dean RA. Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol, 2006, 43(9): 605-617.

[18] Wang Y, Wu J, Park ZY, Kim SG, Rakwal R, Agrawal GK, Kim ST, Kang KY. Comparative secretome investigation of Magnaporthe oryzae proteins responsive to nitrogen starvation. J Proteome Res, 2011, 10(7): 3136-3148.

[19] Pieterse CMJ, Verbakel HM, Spaans JH, Davidse LC, Govers F. Increased expression of the calmodulin gene of the late blight fungus Phytophthora infestans during pathogenesis on potato. Mol Plant Microbe Interact, 1993, 6(2): 164-172.

[20] Pérez-García A, Snoeijers SS, Joosten MHAJ, Goosen T, de Wit PJGM. Expression of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by the global nitrogen response factor NRF1. Mol Plant Microbe Interact, 2001, 14(3): 316-325.

[21] Soundararajan S, Jedd G, Li XL, Ramos-Pamploña M, Chua NH, Naqvi NI. Woronin body function in Mag-naporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell, 2004, 16(6): 1564-1574.

[22] Donofrio NM, Oh Y, Lundy R, Pan H, Brown DE, Jeong JS, Coughlan S, Mitchell TK, Dean RA. Global gene ex-pression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol, 2006, 43(9): 605-617.

[23] Brown SH, Yarden O, Gollop N, Chen S, Zveibil A, Belausov E, Freeman S. Differential protein expression in Colletotrichum acutatum: changes associated with reactive oxygen species and nitrogen starvation implicated in pathogenicity on strawberry. Mol Plant Pathol, 2008, 9(2): 171-190.

[24] Stephenson SA, Hatfield J, Rusu AG, Maclean DJ, Man-ners JM. CfDN3: an essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis. Mol Plant Microbe Interact, 2000, 13(9): 929-941.

[25] 周晓罡, 苏源, 李成云, 丁玉梅, 张绍松, 孙茂林, 李进斌. 氮胁迫条件下稻瘟病菌分泌蛋白致病性分析. 植物病理学报, 2009, 39(5): 491-500.

[26] Marzluf GA. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev, 1997, 61(1): 17-32.

[27] Caddick MX, Arst HN, Taylor LH, Johnson RI, Brownlee AG. Cloning of the regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidu-lans. EMBO J, 1986, 5(5): 1087-1090.

[28] Stewart V, Vollmer SJ. Molecular cloning of nit-2, a regulatory gene required for nitrogen metabolite repression in Neurospora crassa. Gene, 1986, 46(2-3): 291-295.

[29] Morozoc IY, Martinez MG, Jones MG, Caddick MX. A defined sequence within the 3’ UTR of the areA tran-script is sufficient to mediate nitrogen metabolite signalling via accelerated deadenylation. Mol Microbiol, 2000, 37(5): 1248-1257.

[30] Andrianopoulos A, Kourambas S, Sharp JA, Davis MA, Hynes MJ. Characterization of the Aspergillus nidu-lans nmrA gene involved in nitrogen metabolite repression. J Bacteriol, 1998, 180(7): 1973-1977.

[31] Fu YH, Young JL, Marzluf GA. Molecular cloning and characterization of a negative-acting nitrogen regulatory gene of Neurospora crassa. Mol Gen Genet, 1988, 214(1): 74-79.

[32] Lowry JA, Atchley WR. Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol, 2000, 50(2): 103-115.

[33] van Kan JA, van den Ackerveken GF, de Wit PJ. Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol Plant Microbe Interact, 1991, 4(1): 52-59.

[34] Thomma BPHJ, Bolton MD, Clergeot PH, de Wit PJGM. Nitrogen controls in planta expression of Cladosporium fulvum Avr9 but no other effector genes. Mol Plant Pathol, 2006, 7(2): 125-130.

[35] Snoeijers SS, Vossen P, Goosen T, van den Broek HW, de Wit PJGM. Transcription of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by a GATA-type transcription factor in Aspergillus nidulans. Mol Gen Genet, 1999, 261(4-5): 653-659.

[36] Snoeijers SS, Pérez-García A, Goosen T, de Wit PJGM. Promoter analysis of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is the model filamentous fungus Aspergillus nidulans. Curr Genet, 2003, 43(2): 96-102.

[37] Froeliger EH, Carpenter BE. Nut1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet, 1996, 251(6): 647-656.

[38] Lau G, Hamer JE. Regulatory genes controlling Mpg1 expression and pathogenicity in the rice blast fungus Magnaporthe grisea. Plant Cell, 1996, 8(5): 771-781.

[39] Tudzynski B, Homann V, Feng B, Marzluf G. Isolation, characterization and disruption of the areA nitrogen regulatory gene of Gibberella fujikuroi. Mol Gen Genet, 1999, 261(1): 106-114.

[40] Mihlan M, Homann V, Liu TW, Tudzynski B. AREA directly mediates nitrogen regulation of gibberellin biosyn-thesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol Microbiol, 2003, 47(4): 975-991.

[41] Pellier AL, Lauge R, Veneault-Fourrey C, Langin T. CLNR1, the AREA/NIT2-like global nitro-gen regulator of the plant fungal pathogen Colletotrichum lindemu thianum is required for the infection cycle. Mol Microbiol, 2003, 48(3): 639-655.

[42] Divon HV, Ziv C, Davydov O, Yarden O, Fluhr R. The global nitrogen regulator, FNR1, regulates fungal nutrition-genes and fitness during Fusarium ox-ysporum pathogenesis. Mol Plant Pathol, 2006, 7(6): 485-497.

[43] Divon HH, Rothan-Denoyes B, Davydov O, Pietro AD, Fluhr R. Nitrogen responsive genes are differentially regulated in planta during Fusarium oxyspsorum f. sp. lycopersici infection. Mol Plant Pathol, 2005, 6(4): 459–470.

[44] Kim H, Woloshuk CP. Role of AREA, a regulator of ni-trogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol, 2008, 45(6): 947-953.

[45] Burger G, Strauss J, Scazzocchio C, Lang BF. nirA, the pathway-specific regulatory gene of ni-trate assimilation in Aspergillus nidulans, encodes a putative GAL4-type zinc finger protein and contains four introns in highly con-served regions. Mol Cell Biol, 1991, 11(11): 5746-5755.

[46] Horowitz S, Freeman S, Zveibil A, Yarden O. A defect in nir1, a nirA-like transcription factor, con-fers morphological abnormalities and loss of pathogenicity in Colletotrichum acutatum. Mol Plant Pathol, 2006, 7(5): 341-354.

[47] Soanes DM, Kershaw MJ, Cooley RN, Talbot NJ. Regula-tion of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact, 2002, 15(12): 1253-1267.

[48] Solomon PS, Tan KC, Oliver RP. The nutrient supply of pathogenic fungi: a fertile field for study. Mol Plant Pathol, 2003, 4(3): 203-210.

[49] Solomon PS, Oliver RP. Evidence that gamma-aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato. Planta, 2002, 214(3): 414-420.

[50] Keon J, Antoniw J, Carzaniga R, Deller S, Ward JL, Baker JM, Beale MH, Hammond-Kosack K, Rudd JJ. Transcrip-tional adaptation of Mycosphaerella graminicola to programmed cell death (PCD) of its susceptible wheat host. Mol Plant Microbe Interact, 2007, 20(2): 178-193.

[51] Tavernier V, Cadiou S, Pageau K, Lauge’ R, Reisdorf-Cren M, Langin T, Masclaux-Daubresse C. The plant ni-trogen mobilization promoted by Colletotrichum lin-demuthianum in Phaseolus leaves depends on fungus pathogenicity. J Exp Bot, 2007, 58(12): 3351-3360.

[52] Solomon PS, Oliver RP. The nitrogen content of the to-mato leaf apoplast increases during infection by Cladosporium fulvum. Planta, 2001, 213(2): 241-249.

[53] Cove DJ. Chlorate toxicity in Aspergillus nidulans. Studies of mutants altered innitrate assimilation. Mol Gen Genet, 1976, 146(2): 147–159.

[54] Howard K, Foster SG, Cooley RN, Caten CE. Disruption, replacement, and cosuppression of nitrate assimilation genes in Stagonospora nodorum. FungalGenet Biol, 1999, 26(2): 152-162.

[55] Coleman M, Henricot B, Arnau J, Oliver RP. Starva-tion-induced genes of the tomato pathogen Cladosporium fulvum are also induced during growth in planta. Mol Plant Microbe Interact, 1997, 10(9): 1106-1109.

[56] Pieterse CM, Derksen AM, Folders J, Govers F. Expression of the Phytophthora infestans ipiB and ipiO genes in planta and in vitro. Mol Gen Genet, 1994, 244(3): 269-277.

[57] Foster AJ, Jenkinson JM, Talbot NJ. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J, 2003, 22(2): 225-235.

[58] Wilson RA, Jenkinson JM, Gibson RP, Littlechild JA, Wang ZY, Talbot NJ. Tps1 regulates the pentose phos-phate pathway, nitrogen metabolism and fungal virulence. EMBO J, 2007, 26(15): 3673-3685.

[59] Pullan ST, Chandra G, Bibb MJ, Merrick M. Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics, 2011, 12(175): 1471-1485.

[60] Chang JH, Urbach JM, Law TF, Arnold LW, Hu A, Gom-bar S, Grant SR, Ausubel FM, Dangl J L. A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. Proc Natl Acad Sci USA, 2005, 102(7): 2549-2554.

[61] Guttman DS, Vinatzer BA, Sarkar SF, Ranall MV, Kettler G, Greenberg JT. A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science, 2002, 295(5560): 1722-1726.

[62] Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, West PV, Chapman S, Hein I, Toth IK, Pritchard L, Birch PRJ. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature, 2007, 450 (7166): 115-118.

[63] Jiang RHY, Tripathy S, Govers F, Tyler BM. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving super family with more than 700 members. Proc Natl Acad Sci USA, 2008, 105(12): 4874-4879.

[64] Weiland JJ. Production of protease isozymes by Aphanomyces cochlioides and Aphanomyces euteiches. Physiol Mol Plant Pathol, 2004, 65(5): 225-233.

[65] Rico A, Preston GM. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant Microbe Interact, 2008, 21(2): 269–282.

[66] Lee SJ, Kelley BS, Damasceno CM, St John B, Kim BS, Kim BD, Rose JKC. A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta. Mol Plant Microbe Interact, 2006, 19(12): 1368-1377.