DOI: 10.3724/SP.J.1005.2012.01304

Hereditas (Beijing) (遗传) 2012/34:10 PP.1304-1313

Artificial selection for cattle based on high-density SNP markers

With the implementation of genetic improvement in recent years, artificial selection has greatly improved beef cattle production performance and its genetic basis has been dramatically changed. In this study, based on the Illumina BovineSNP50 (54K) and BovineHD (770K) BeadChip and the FST value, we analyzed the genetic differentiation of cattle and screened the imprints of selection in bovine genome. Finally, we found 47104 OUTLIER SNP loci and 3064 candidate genes, for example, CLIC5, TG, CACNA2D1, and FSHR etc. The biological proc-esses and molecular functions of genes were analyzed through gene annotation.The results of this study established a ge-nome-wide map of selection footprints in beef cattle genome and a clue for in-depth study of artificial selection and under-standing of biological evolution.Our results indicate that artificial selection has played an important role in cattle breed genetic improvement.

Key words:bovine genome,artificial selection,single nucleotide polymorphism,gene annotation

ReleaseDate:2014-07-21 16:20:39

[1] Bradley DG, Cunningham EP. Genetic aspects of domes-tication. In: Fries R, Ruvinsky A, eds. The Genetics of Cattle. Wallingford: CABI Publishing, 1999: 15-31.

[2] Thornton KR, Jensen JD. Controlling the false-positive rate in multilocus genome scans for selection. Genetics, 2007, 175(2): 737-750.

[3] Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38(6): 1358-1370.

[4] Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. Interro-gating a high-density SNP map for signatures of natural selection. Genome Res, 2002, 12(12): 1805-1814.

[5] Hayes BJ, Chamberlain AJ, Maceachern S, Savin K, McPartlan H, MacLeod I, Sethuraman L, Goddard ME. A genome map of divergent artificial selection between Bos taurus dairy cattle and Bos taurus beef cattle. Anim Genet, 2009, 40(2): 176-184.

[6] Pei YF, Li J, Zhang L, Papasian CJ, Deng HW, Heutink P. Analyses and comparison of accuracy of different geno-type imputation methods. PLoS One, 2008, 3(10): e3551.

[7] Weir BS. Population substructure: Genetic data analysis II. Sunderland, MA: Sinauer Associates, 1996: 161-173.

[8] McGill R, Tukey JW, Larsen WA. Variations of box plots. Am Stat, 1978, 32(1): 12-16.

[9] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 2009, 37(1): 1-13.

[10] Qanbari S, Pimentel EC, Tetens J, Thaller G, Lichtner P, Sharifi AR, Simianer H. A genome-wide scan for signa-tures of recent selection in Holstein cattle. Anim Genet, 2010, 41(4): 377-389.

[11] Barandse WJ. Assessing lipid metabolism. Patent, International Publication Number: WO 99/23248. World Interna-tional Property Organization, 1999.

[12] Baud S, Donaldson N. The TG5 thyroglobulin gene test for amarbling quantitative trait loci evaluated in feedlot cattle. Aust J Exp Agric, 2004, 44(7): 669-674.

[13] Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, van der Wind-Everts A, Lee JH, Drackley JK, Band MR, Hernan-dez AG, Shani M, Lewin HA, Weller JI, Ron M. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res, 2005, 15(7): 936-944.

[14] MacEachern S, Hayes B, McEwan J, Goddard M. An ex-amination of positive selection and changing effective population size in Angus and Holstein cattle populations (Bos taurus)using a high density SNP genotyping platform and the contribution of ancient polymorphism to genomic diversity in domesticcattle. BMC Genom-ics, 2009, 10(1): 181.

[15] Prasad A, Schnabel RD, McKay SD, Murdoch B, Stothard P, Kolbehdari D, Wang Z, Taylor JF, Moore SS. Linkage disequilibrium and signatures of selection on chromosomes 19 and 29 in beef and dairy cattle. Anim Genet, 2008, 39(6): 597-605.

[16] Qanbari S, Pimentel EC, Tetens J, Thaller G, Lichtner P, Sharifi AR, Simianer H. A genome-wide scan for signa-tures of recent selection inHolsteincattle. Anim Genet, 2010, 41(4): 377-389.

[17] Flori L, Fritz S, Jaffrézic F, Boussaha M, Gut I, Heath S, Foulley JL, Gautier M. The genome response to artificial selection: a case study in dairy cattle. PLoS One, 2009, 4(8): e6595.

[18] Qanbari S, Gianola D, Hayes B, Schenkel F, Miller S, Moore S, Thaller G, Simianer H. Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle. BMC Genomics, 2011, 12(1): 318.

[19] Black WC 4th, Baer CF, Antolin MF, DuTeauNM. Popula-tion genomics: genome-wide sampling of insect popula-tions. Annu Rev Entomol, 2001, 46(4): 441-469.

[20] Cavalli-Sforza LL. Population structure and human evolution. Proc R Soc Lond B Biol Sci, 1966, 164(995): 362-379.

[21] Lewontin RC, KrakauerJ. Distribution of gene frequency as a test of the theory of the selective neutrality of poly-morphisms. Genetics, 1973, 74(1): 175-195.

[22] Beaumont MA, Balding DJ. Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol, 2004, 13(4): 969-980.

[23] Wang ET, Kodama G, Baldi P, Moyzis RK. Global land-scape of recent inferred Darwinian selection for Homo sapiens. Proc Natl Acad Sci USA, 2006, 103(1): 135-140.

[24] Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol, 2006, 4(3): e72.

[25] Akey JM, Eberle MA, Rieder MJ, Carlson CS, Shriver MD, Nickerson DA, Kruglyak L. Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol, 2004, 2(10): e286.

[26] Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. Interro-gating a high-density SNP map for signatures of natural selection. Genome Res, 2002, 12(12): 1805-1814.

[27] Hoaglin DC, Mosteller F, Tukey JW. Understanding Ro-bust and Exploratory Data Analysis. New York: John Wiley & Sons, 1983.

[28] Wayne WA, Stephan SR. Testing for outliers from a mix-ture distribution when some data are missing. Comput Stat Data Anal, 2003, 44(1-2): 193-210.

[29] Lohnes D, Kastner P, Dierich A, Mark M, LeMeur M, Chambon P. Function of retinoic acid receptor Y in the mouse. Cell, 1993, 73(4): 643-658.

[30] 黄萌, 许尚忠, 昝林森, 张路培, 高雪, 陈金宝. 牛RXRG基因遗传变异与双胎性状的关联分析. 遗传学报, 2008, 30(2): 190-194.

[31] Hou GY, Yuan ZR, Gao X, Li JY, Gao HJ, Chen JB, Xu SZ. Genetic polymorphisms of the CACNA2D1 gene and their association with carcass and meat quality traits in cattle. Biochem Genet, 2010, 48(9-10): 751-759.

[32] Yuan ZR, Xu SZ. Novel SNPs of the bovine CACNA2D1 gene and their association with carcass and meat quality traits. Mol Biol Rep, 2011, 38(1): 365-370.

[33] 雷雪芹, 陈宏, 袁志发, 雷初朝, 徐廷生, 孙维斌. 促卵泡生成素受体基因的SNP对牛双胎性状的标记研究. 云南畜牧兽医, 2002, (4): 28-29.

[34] Cases S, Zhou P, Schillingford JM, Wiseman BS, Fish JD, Angle CS, Hennighausen L, Werb Z, Farese RV Jr. Development of the mammary gland requires DGAT1 expression in stromal and epithelial tissues. Development, 2004, 131(13): 3047-3055.

[35] Ailhaud G, Grimaldi P, Négrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nu-tri, 1992, 12(7): 207-233.

[36] Barendse WJ. Assessing lipid metabolism. International Patent Application: PCT 98/00882, 1999.

[37] Thaller G, Kuhn C, Winter A, Ewald G, Bellmann O, Wegner J, Zühlke H, Fries R. DGAT1, a new positional and functional candidate gene for intramuscular fat depo-sition in cattle. Anim Genet, 2003, 34(5): 354-357.

[38] Casas E, White SN, Riley DG, Smith TPL, Brennemant RA, Olson TA, Johnson DD, Coleman SW, Bennett GL, Chase CC Jr. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bosin-dicus cattle. J Anim Sci, 2005, 83(1): 13-19.

[39] Shin SC, Chung ER. Association of SNP marker in the thyroglbulin gene with carcass and meat quality traits in Korean cattle. Asian-Australas J Anim Sci, 2007, 20(2): 172-177.

[40] Hou GY, Yuan ZR, Zhou HL, Zhang LP, Li JY, Gao X, Wang DJ, Gao HJ, Xu SZ. Association of thyroglobulin gene variants with carcass and meat quality traits in beef cattle. Mol Biol Rep, 2011, 38(7): 4705-4708.

[41] Sturgill JL, Mathews J, Scherle P, Conrad DH. Glutamate signaling through the kainate receptor enhances human immunoglobulin production. J Neuroimmunol, 2011, 233(1-2): 80-89.

[42] Laramie JM, Wilk JB, Williamson SL, Nagle MW, La-tourelle JC, Tobin JE, Province MA, Borecki IB, Myers RH. Polymorphisms near EXOC4 and LRGUK on chro-mosome 7q32 are associated with Type 2 Diabetes and fasting glucose. BMC Med Genet, 2008, 9: 46.

[43] 张海燕, 尹靖东, 王强. CLIC5等位基因与PIC猪胴体品质和肉质的关系. 中国畜牧兽医学会2009学术年会论文集(下册), 2009.