doi:

DOI: 10.3724/SP.J.1005.2008.01272

Hereditas (Beijing) (遗传) 2008/30:10 PP.1272-1278

Research progress of single nucleotide polymorphisms in forest trees


Abstract:
Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation in many organisms. Forest is an important plant group and key component of the terrestrial plant ecosystem. As a new marker system, SNP has been applied in genetic and breeding studies in some tree species of genera Pinus, Populus, Pseudotsuga, Eucalyp-tus, and Picea, and the related genetic information, such as nucleotide diversity, linkage disequilibrium (LD) and population structure has been generated. These studies are mainly based on sequencing and analysis of candidate genes. SNP-based association genetics analysis or LD mapping has become a useful tool for dissection of complex traits in forest trees. Association studies in Eucalyptus spp. and Pinus taeda L. found that some SNP sites in various genes were associated with distinct wood property traits. Meanwhile, estimation of genetic parameters has revealed the evolutionary and ecological significance at different extents in several tree species. Intensive applications of SNP approach are expected to greatly accelerate the development of research on forest genetics and breeding.

Key words:forest trees,single nucleotide polymorphisms (SNPs),nucleotide diversity,linkage disequilibrium (LD),asso-ciation genetics

ReleaseDate:2014-07-21 14:23:51

Funds:国家“十一五”科技支撑计划项目(编号:2006BAD01A15)和国家高技术研究发展计划项目(863项目)(编号:2006AA100109)资助[Supported by the National“11th Five-Year-Plan”Science and Technology Program of China (No. 2006BAD01A15) and the Hi-Tech Re-search and Development Program of China (863 Program)(No. 2006AA100109)]



[1]ZENG Yan-Ru, HUANG Min-Ren, WANG Ming-Xiu. Single nucleotide polymorphisms, a new molecular marker. J Nanjing Forestry Univ (Natural Sci-ences), 2003, 27(3): 84-88. 曾燕如, 黄敏仁, 王明庥. 一种新的分子标记—单核苷 酸多态(SNP). 南京林业大学学报(自然科学版), 2003, 27(3): 84-88.

[2]Maniatis N. Linkage Disequilibrium Maps and Dis-ease-association Mapping. In: Linkage Disequilibrium and Association Mapping, Methods in Molecular Biology. Humana Press, 2007, 376: 109-121.

[3]Rafalski JA. Novel genetic mapping tools in plants: SNP and LD based approaches. Plant Sci, 2002, 162(3): 329-333.

[4]Dantec LL, Chagné D, Pot D, Cantin O, Garnier-Géré P, Bedon F, Frigerio JM, Chaumeil P, Léger P, Garcia V, Laigret F, de Daruvar A, Plomion C. Automated SNP de-tection in expressed sequence tags: statistical considera-tions and application to maritime pine sequences. Plant Mol Biol, 2004, 54(3): 461-470.

[5]Zhang B, Zhou Y, Zhang L, Zhuge Q, Wang MX, Huang MR. Identification and validation of single nucleotide polymor-phisms in poplar using publicly expressed sequence tags. J Integr Plant Biol, 2005, 47(12): 1493-1499.

[6]Pavy N, Parsons LS, Paule C, MacKay J, Bousquet J. Automated SNP detection from a large collection of white spruce expressed sequences: contributing factors and ap-proaches for the categorization of SNPs. BMC Ge-nomics, 2006, 7: 174.

[7]Kim S, Misra A. SNP genotyping: technologies and bio-medical applications. Annu Rev Biomed Eng, 2007, 9: 289-320.

[8]Gill GP, Brown GR, Neale DB|A sequence mutation in the cinnamyl alcohol dehydrogenase gene associated with al-tered lignification in loblolly pine|Plant Biotechnol J|2003(4)|1||253|258.

[9]Thumma BR, Nolan MF, Evans R, Moran GF. Polymor-phisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics, 2005, 171(3): 1257-1265

[10]Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, de-Pamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Ri-naldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D. The genome of black cottonwood, Populus trichocarpa (Torr Gray). Science, 2006, 313(5793): 1596-1604.

[11]Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E, Calabrese P, Gladstone J, Goyal R, Jakobsson M, Kim S, Morozov Y, Padhukasahasram B, Plagnol V, Rosenberg NA, Shah C, Wall JD, Wang J, Zhao K, Kalbfleisch T, Schulz V, Kreitman M, Bergelson J. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol, 2005, 3(7): 1289-1299.

[12]Caicedo AL, Williamson S, Hernandez RD, Boyko A, Fledel-Alon A, York TL, Polato NR, Olsen KM, Nielsen R, McCouch SR, Bustamante CD, Purugganan MD. Ge-nome-wide patterns of nucleotide polymorphism in do-mesticated rice. PLoS Genet, 2007, 3(9): 1745-1756.

[13]Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB. Nucleotide diversity and linkage disequilibrium in lob-lolly pine. Proc Natl Acad Sci USA, 2004, 101(42): 15255-15260.

[14]Pot D, McMillan L, Echt C, Le Provost G, Garnier-Géré P, Cato S, Plomion C. Nucleotide variation in genes involved in wood formation in two pine species. New Phy-tol, 2005, 167(1): 101-112.

[15]Ingvarsson PK. Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics, 2005, 169(2): 945-953.

[16]Krutovsky KV, Neale DB. Nucleotide diversity and link-age disequilibrium in cold-hardiness- and wood qual-ity-related candidate genes in douglas fir. Genetics, 2005, 171(4): 2029-2041.

[17]Heuertz M, De Paoli E, Källman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N. Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics, 2006, 174(4): 2095-2105.

[18]Savolainen O, Pyhäjärvi T. Genomic diversity in forest trees. Curr Opin Plant Biol, 2007, 10(2): 162-167.

[19]Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorabi F, Kalynyak T, Johnson L, Bohlmann J, Ellis BE, Douglas CJ, Cronk QC. Use of ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol, 2006, 15(5): 1367-1378.

[20]Neale DB, Savolainen O. Association genetics of complex traits in conifers. Trends Plant Sci, 2004, 9(7): 325-330.

[21]Yin TM, DiFrazio SP, Gunter LE, Jawdy SS, Boerjan W, Tuskan GA. Genetic and physical mapping of Melampsora rust resistance genes in Populus and characterization of linkage disequi-librium and flanking genomic sequence. New Phy-tol, 2004,164(1): 95-105.

[22]GAN Si-Ming, SU Xiao-Hua. Progress in research on forest tree genomics. J Plant Physiol Mol Biol, 2006, 32(2): 133-142. 甘四明, 苏晓华. 林木基因组学研究进展. 植物生理与分子生物学学报, 2006, 32(2): 133-142.

[23]Boerjan W. Biotechnology and the domestication of forest trees. Curr Opin Biotechnol, 2005, 16(2): 159-166.

[24]González-Martínez SC, Krutovsky KV, Neale DB. Forest tree genomics and adaptive evolution. New Phytol, 2006, 170(2): 227-238.

[25]WANG Rong-Huan, WANG Tian-Yu, LI Yu. Linkege dis-equlibrium in plant genomes. Hereditas (Beijing), 2007, 29(11): 1317-1323. 王荣焕, 王天宇, 黎裕. 植物基因组中的连锁不平衡. 遗传, 2007, 29(11): 1317-1323.

[26]Jorde LB. Linkage disequilibrium and the search for complex disease genes. Genome Res, 2000, 10(10): 1435-1444.

[27]Plomion C, Cooke J, Richardson T, Mackay J, Tuskan G. Report on the forest trees workshop at the plant and ani-mal genome conference. Comp Funct Genom, 2003, 4(2): 229-238.

[28]González-Martínez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB. Association genetics in Pinus taeda L. I. Wood property traits. Genetics, 2007, 175(1): 399-409.

[29]Yu JM, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Hol-land JB, Kresovich S, Buckler ES. A unified mixed-model method of association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38(2): 203-208.

[30]Neale DB. Genomics to the tree breeding and forest health. Curr Opin Genet Dev, 2007, 17(6): 539-544.

[31]Weiss KM, Clark AG, Linkage disequilibrium and the mapping of complex human traits. Trends Genet, 2002, 18(1): 19-24.

[32]Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, Frazer KA, Cox DR. Whole-genome pat-terns of common DNA variation in three human popula-tions. Science, 2005, 307(5712): 1072-1079.

[33]González-Martínez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB. DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics, 2006, 172(3): 1915-1926.

[34]Tajima F. Statistical method for testing the neutral muta-tion hypothesis by DNA polymorphism. Genetics, 1989, 123(3): 585-595.

[35]Ingvarsson PK, García MV, Hall D, Luquez V, Jansson S. Clinal variation in phyB2, a candidate gene for day- length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula). Genetics, 2006, 172(3): 1845-1853.

[36]Joseph JA, Lexer C. A set of novel DNA polymorphisms within candidate genes potentially involved in ecological divergence between Populus alba and P. tremula, two hybridizing European forest tress. Molecular Ecology Resources, 2008, 8(1): 188-192.

[37]Jansson S, Douglas CJ. Populus: a model system for plant biology. Annu Rev Plant Biol, 2007, 58: 435-458

[38]Long AD, Langley CH. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res, 1999, 9(8): 720-731.

PDF