doi:

DOI: 10.3724/SP.J.1005.2009.01094

Hereditas (Beijing) (遗传) 2009/31:11 PP.1094-1100

The roles of miR-17-92 cluster in mammal development and tumori-genesis


Abstract:
MicroRNAs (miRNAs) are a new class of small, non-coding RNAs that regulate gene expression. The base pairing interactions between miRNAs and their target mRNAs, often within the 3’-untranslated region (UTR) of target genes, result in the degradation of target mRNAs or repression of their translation. MiRNAs regulate a diverse range of physiological processes, including cell differentiation and proliferation, mammalian development and human disease. Many studies have shown that miR-17-92 cluster, which encodes miR-17-5p, miR-17-3p, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92-1, is expressed in many mammalian tissues. This cluster contributes to the development of heart, lung, blood vessel, and immune system. In addition, it can induce tumorigenesis, such as lymphoma and vascularized tumor as an oncogene. However, miR-17-92 cluster proved to suppress breast cancer cell proliferation and tumor colony formation as a tumor suppressor. This paper reviews the roles of miR-17-92 cluster in mammal development and the relationship between miR-17-92 cluster and tumorigenesis.

Key words:miR-17-92 cluster,development,tumorigenesis

ReleaseDate:2014-07-21 14:58:10



[1] Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development, 2005, 132(21): 4645–4652.

[2] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281–297.

[3] Urbich C, Kuehbacher A, Dimmeler S. Role of microR-NAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res, 2008, 79(4): 581–588.

[4] Blenkiron C, Miska EA. miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet, 2007, 16(1): 106–113.

[5] He L, Thomson JM, Hemann MT, Hernando-monge E, Mu D, Goodson S, Powers S, Cordon-cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a potential human oncogene. Nature, 2005, 435(7043): 828–833.

[6] Landais S, Landry S, Legault P, Rassart E. Oncogenic po-tential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res, 2007, 67(12): 5699–5707.

[7] Ventura A, Young AG, Winslow MM, Lintault L, Meiss-ner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T. Targeted dele-tion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell, 2008, 132(5): 875–886.

[8] Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C, Jensen K, Cobb BS, Merkenschlager M, Rajewsky N, Rajewsky K. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell, 2008, 132(5): 860–874.

[9] Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol, 2007, 310(2): 442–453.

[10] Lu Y, Okubo T, Rawlins E, Hogan BL. Epithelial pro-genitor cells of the embryonic lung and the role of mi-croRNAs in their proliferation. Proc Am Thorac Soc, 2008, 5(3): 300–304.

[11] uarez Y, Fernandez-hernando C, Yu J, Gerber SA, Harri-son KD, Pober JS, Iruela-arispe ML, Merkenschlager M, Sessa WC. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA, 2008, 105(37): 14082–14087.

[12] Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ, Li X. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA, 2008, 105(8): 2889–2894.

[13] Jin P, Wang E, Ren J, Childs R, Shin JW, Khuu H, Marin-cola FM, Stroncek DF. Differentiation of two types of mobilized peripheral blood stem cells by microRNA and cDNA expression analysis. J Transl Med, 2008, 6: 39.

[14] Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T. A polycistronic microRNA cluster, miR-17-92, is overex-pressed in human lung cancers and enhances cell prolif-eration. Cancer Res, 2005, 65(21): 9628–9632.

[15] Rinaldi A, Poretti G, Kwee I, Zucca E, Catapano CV, Ti-biletti M G, Bertoni F. Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma, 2007, 48(2): 410–412.

[16] Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, Jacob ST, Ghoshal K. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem, 2006, 99(3): 671–678.

[17] Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P, Sevignani C, Byrne D, Negrini M, Pagano F, Gomella LG, Croce CM, Baffa R. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol, 2007, 25(5): 387–392.

[18] Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Pet-rocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 2006, 103(7): 2257–2261.

[19] Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, Yoshida Y, Seto M. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 ampli-fication in malignant lymphoma. Cancer Res, 2004, 64(9): 3087–3095.

[20] O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expres-sion. Nature, 2005, 435(7043): 839–843.

[21] Tagawa H, Karube K, Tsuzuki S, Ohshima K, Seto M. Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Sci, 2007, 98(9): 1482–1490.

[22] Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K. MicroRNA-17-92 down-regulates expres-sion of distinct targets in different B-cell lymphoma sub-types. Blood, 2009, 113(2): 396–402.

[23] Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, ang J, Henderson J M, Kutok JL, Rajewsky K. Lym-phoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol, 2008, 9(4): 405–414.

[24] Suzuki A, Yamaguchi MT, Ohteki T, Sasaki T, Kaisho T, Kimura Y, Yoshida R, Wakeham A, Higuchi T, Fukumoto M, Tsubata T, Ohashi PS, Koyasu S, Penninger JM, Na-kano T, Mak TW. T cell-specific loss of Pten leads to de-fects in central and peripheral tolerance. Immunity, 2001, 14(5): 523–534.

[25] Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H, Pellegrini M, Cory S, Adams JM, Strasser A. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature, 2002, 415(6874): 922–926.

[26] Egle A, Harris AW, Bouillet P, Cory S. Bim is a suppres-sor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA, 2004, 101(16): 6164–6169.

[27] Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, Ferbeyre G, Chartrand P. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem, 2007, 282(4): 2135–2143.

[28] Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci USA, 2008, 105(50): 19678–19683.

[29] Xu X, Hong Y, Kong C, Xu L, Tan J, Liang Q, Huang B, Lu J. Protein tyrosine phosphatase receptor-type O (PTPRO) is co-regulated by E2F1 and miR-17-92. FEBS Lett, 2008, 582(19): 2850–2856.

[30] Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of trans-forming growth factor beta signaling. Cancer Res, 2008, 68(20): 8191–8194.

[31] Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-tikhonenko A. Augmentation of tumor angio-genesis by a Myc-activated microRNA cluster. Nat Genet, 2006, 38(9): 1060–1065.

[32] Takakura S, Mitsutake N, Nakashima M, Namba H, Saenko V A, Rogounovitch T I, Nakazawa Y, Hayashi T, Ohtsuru A, Yamashita S. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci, 2008, 99(6): 1147–1154.

[33] Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, Yamada H, Suzuki M, Nagino M, Nimura Y, Osada H, Takahashi T. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene, 2007, 26(41): 6099–6105.

[34] Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science, 1997, 277(5328): 965–968.

[35] Wang Y, Wu MC, Sham JS, Zhang W, Wu WQ, Guan XY. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-through- put tissue microarray. Cancer, 2002, 95(11): 2346–2352.

[36] Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol, 2006, 26(21): 8191–8201.

[37] Hunter T, Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell, 1994, 79(4): 573–582.

[38] Yu Z, Wang C, Wang M, Li Z, Casimiro MC, Liu M, Wu K, Whittle J, Ju X, Hyslop T, Mccue P, Pestell RG. A cy-clin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol, 2008, 182(3): 509–517.

[39] Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, Macmenamin P, Da PI, Gunsalus KC, Stoffel M, Ra-jewsky N. Combinatorial microRNA target predictions. Nat Genet, 2005, 37(5): 495–500.

[40] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, of-ten flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1): 15–20.

[41] Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell, 2003, 115(7): 787–798.

PDF