DOI: 10.3724/SP.J.1219.2013.00657

Information and Control (信息与控制) 2013/42:6 PP.657-663

Model Reference Adaptive Decoupling Controller Based on Neural Network Generalized Inverse for PMSM

An adaptive decoupling controller for permanent-magnet synchronous motor (PMSM) is proposed to linearize and decouple the speed regulation system. The proposed intelligent controller adopts a model reference adaptive decoupling-neural network generalized inverse (MRAD-NNGI) controller, in which the feedback loop is constructed by model reference adaptive (MRA) controller and the feed-forward loop is constructed by two front controllers. The MRAD-NNGI controller combines the merits of the high-precision tracking ability of self-adaptive theory and the decoupling ability of artificial neural networks. The feed-forward controller is employed to effectively improve the anti-interference performance. The simulation and experimental results show that the proposed MRAD-NNGI controller takes on good stability and precise response regardless of the load disturbances and the system parameters variations.

Key words:permanent-magnet synchronous motor (PMSM),neural network generalized inverse,model reference adaptive,decoupling

ReleaseDate:2015-04-15 18:52:35

[1] Cheng M, Hua W, Zhang J, et al. Overview of stator-permanent magnet brushless machines[J]. IEEE Transactions on Industrial Electronics, 2011, 58(11): 5087-5101.

[2] Alecsa B, Cirstea M N, Onea A. Simulink modeling and design of an efficient hardware-constrained FPGA-based PMSM speed controller[J]. IEEE Transactions on Industrial Informatics, 2012, 8(3): 554-562.

[3] Cao R, Mi C, Cheng M. Quantitative comparison of flux-switching permanent-magnet motors with interior permanent magnet motor for EV, HEV, and PHEV applications[J]. IEEE Transactions on Magnetics, 2012, 48(8): 2374-2384.

[4] Zhao W, Cheng M, Chau K T, et al. Remedial injected-harmonic-current operation of redundant flux-switching permanent magnet motor drives[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 151-159.

[5] Xia C L, Guo C, Shi T N. A neural-network-identifier and fuzzy-controller-based algorithm for dynamic decoupling control of permanent-magnet spherical motor[J]. IEEE Transactions on Industrial Electronics, 2010, 57(8): 2868-2878.

[6] Comanescu M, Xu L Y, Batzel T D. Decoupled current control of sensorless induction-motor drives by integral sliding mode[J]. IEEE Transactions on Industrial Electronics, 2008, 55(11): 3836-3845.

[7] 薛树功,魏利胜,凌有铸.基于EKF和SMC的永磁同步电机无传感器矢量控制[J].信息与控制,2012, 41(2):267-272. Xue S G, Wei L S, Ling Y Z. Sensorless vector control of permanent magnet synchronous motors based on EKF and SMC[J]. Information and Control, 2012, 41(2): 267-272.

[8] 张春,郭兴众.基于自适应神经模糊推理系统的永磁同步电机直接转矩控制[J].信息与控制, 2010,39(5): 655-661. Zhang C, Guo X Z. The direct torque control in the permanent magnet synchronous motor based on ANFIS[J]. Information and Control, 2010, 39(5): 655-661.

[9] Chy M I, Uddin M N. Development and implementation of a new adaptive intelligent speed controller for IPMSM drive[J]. IEEE Transactions on Industry Applications, 2009, 45(3): 1106-1115.

[10] Marino R, Tomei P. Nonlinear control design: Geometric, adaptive and robust[M]. Beijing: Publishing House of Electronics Industry, 2006: 122-137.

[11] 戴先中.多变量非线性系统的神经网络逆控制方法[M].北京:科学出版社,2005:19-22. Dai X Z. Neural network inverse control method for multivariable nonlinear systems[M]. Beijing: Science Press, 2005: 19-22.

[12] 孟昭军,孙昌志,安跃军. 基于时间延迟状态反馈精确线性化的PMSM混沌反控制[J].电工技术学报,2007, 22(3):27-31. Meng Z J, Sun C Z, An Y J. Chaos anti-control of permanent magnet synchronous motor based on exact linearization via time-delayed state variable feedback[J]. Transactions of China Electrotechnical Society, 2007, 22(3): 27-31.

[13] 刘贤兴,卜言柱,胡育文,等. 基于精确线性化解耦的永磁同步电机空间矢量调制系统[J].中国电机工程学报,2007,27(30):55-59. Liu X X, Bu Y Z, Hu Y W, et al. Space vector modulation system for permanent magnet synchronous motor based on precision linearization decoupling[J]. Proceedings of the CSEE, 2007, 27(30): 55-59.

[14] 戴先中,刘国海.两变频调速电机系统的神经网络逆同步控制[J]. 自动化学报, 2005,31(6):890-900. Dai X Z, Liu G H. Neural network inverse synchronous control of two-motor variable frequency speed-regulating system[J]. Acta Automatica Sinica, 2005, 31(6): 890-900.

[15] 刘国海,张锦,赵文祥,等.两电机变频系统的支持向量机广义逆内模解耦控制[J].中国电机工程学报,2011,31(6):85-91. Liu G H, Zhang J, Zhao W X, et al. Internal model control based on support vector machines generalized inverse for two-motor variable frequency system applications[J]. Proceedings of the CSEE, 2011, 31(6): 85-91.

[16] 谢春利,邵诚,赵丹丹. 基于最小二乘支持向量机的非线性系统鲁棒自适应跟踪控制[J]. 信息与控制,2010,39(1):67-76. Xie C L, Shao C, Zhao D D. Robust adaptive tracking control for nonlinear system based on least squares support vector machine[J]. Information and Control, 2010, 39(1): 67-76.

[17] Kim K H. Model reference adaptive control-based adaptive current control scheme of a PM synchronous motor with an improved servo performance[J]. IET Electric Power Applications, 2009, 3(1): 8-18.

[18] Maiti S, Chakraborty C, Sengupta S. Simulation studies on model reference adaptive controller based speed estimation technique for the vector controlled permanent magnet synchronous motor drive[J]. Simulation Modelling Practice and Theory, 2009, 17(4): 585-596.

[19] Liu G H, Chen L L, Zhao W X, et al. Internal model control of permanent magnet synchronous motor using support vector machine generalized inverse[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 890-898.