DOI: 10.3724/SP.J.1219.2013.00758

Information and Control (信息与控制) 2013/42:6 PP.758-764

PID Controller of Magnetic Suspension System Based on CPSO in Multi-agent Architecture

Optimization design of PID controller for magnetic suspension system is studied. Based on the multi-agent system (MAS) and inspired by the chaos-local-search (CLS) algorithm, a novel particle swarm optimization (MAS-CPSO) is proposed to get the optimized parameters of PID controller of the magnetic suspension system. The swarm search feature of the PSO is combined with the intelligent feature of MAS to improve global search capability. The chaotic local search feature of CLS enables the diversity of the information and thus improves the convergence precision of algorithm in the solution space. The function based on integral of time-weighted absolute error (ITAE) is served as optimization objective, and the unit step response of the system is simulated. The experiment results show that the proposed algorithm can effectively improve the dynamic properties of magnetic suspension system, and it has better search ability and higher degree of convergence.

Key words:magnetic suspension system,PID controller,particle swarm optimization (PSO),multi-agent system,chaos-local-search

ReleaseDate:2015-04-15 18:52:45

[1] 朱晓明,梅雪松,张东升.一种新的磁悬浮系统建模方法[J].西安交通大学学报,2007,2(3):226-230. Zhu X M, Mei X S, Zhang D S. A new modeling method for magnetic levitation system[J]. Journal of Xi'an Jiaotong University, 2007, 2(3): 226-230.

[2] 陆荣,吴勇,赵敖东.PID控制器的量子粒子群多目标优化设计[J]. 仪表技术与传感器,2008(4):84-87. Lu R, Wu Y, Zhao A D. Multi-object parameter optimization of PID controller based on quantum-behaved particle swarm algorithm[J]. Instrument Technique and Sensor, 2008(4): 84-87.

[3] 南海鹏,罗兴锜,余向阳.基于遗传算法的水轮机智能PID调速器研究[J].水力发电学报,2004,23(1):107-112. Nan H P, Luo X Q, Yu X Y. A study of intelligent PID hydraulic turbine governor based on genetic algorithm[J]. Journal of Hydroelectric Engineering, 2004, 23(1): 107-112.

[4] Lansberry J E, Wozniak L. Adaptive hydrogenerator governor tuning with a genetic algorithm[J]. IEEE Transactions on Energy Conversion, 1994, 9(1): 179-183.

[5] 龚崇权,蔡维由,肖惠民.基于遗传算法的水轮机调节系统最优参数整定[J].电力系统自动化,2002,26(15):57-79. Gong C Q, Cai W Y, Xiao H M. GA-based optimal parameter setting for hydroturbine govering system[J]. Automation of Electric Power System, 2002, 26(15): 57-59.

[6] 刘立群,孙志毅.免疫响应反馈理论在水轮机调节系统中的应用[J].系统仿真学报,2007,19(7):1579-1582. Liu L Q, Sun Z Y. Application of immune response feedback principle to hydraulic turbine system[J]. Journal of System Simulation, 2007, 19(7): 1579-1582.

[7] Saeki M. Properties of stabilizing PID gain set in parameter space[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1710-1715.

[8] Meng X Z, Song B Y. Fast genetic algorithms used for PID parameter optimization[C]//2007 IEEE International Conference on Automation and Logistics. Piscataway, NJ, USA: IEEE, 2007: 2144-2148.

[9] Kennedy J, Eberhard R. A new optimizer using particle warm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Piscataway, NJ, USA: IEEE, 1995: 39-43.

[10] Sensarma P S, Rahmani M. A comprehensive method for optimal expansion planning using particle swarm optimization[C]//Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference. Piscataway, NJ, USA: IEEE, 2002: 1317-1322.

[11] Gaing Z L. Discrete particle swarm optimization algorithm for unit commitment[C]//IEEE Power Engineering Society General Meeting. Piscataway, NJ, USA: IEEE, 2003: 418-424.

[12] Park J B, Lee K S. Economic load dispatch for non-smooth cost functions using particle swarm optimization[C]//IEEE Power Engineering Society General Meeting. Piscataway, NJ, USA: IEEE, 2003: 938-943.

[13] Abido M. Optimal power flow using particle swarm optimization[J]. Electrical Power and Energy System, 2002, 24(7): 563-571.

[14] Gaing Z L. A particle swarm optimization approach for optimum design of PID controller in AVR system[J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 384-391.

[15] 赵波,曹一家.电力系统无功优化的多智能体粒子群优化算法[J].中国电机工程学报,2005,25(5):1-7. Zhao B, Cao Y J. A multi-agent particle swarm optimization algorithm for reactive power optimization[J]. Proceedings of the CSEE, 2005, 25(5): 1-7.

[16] 李群明,朱伶,徐震.磁悬浮球的鲁棒控制器设计[J].中南大学学报:自然科学版,2007,38(5):922-927. Li Q M, Zhu L, Xu Z. Robust controller design of maglev ball system[J]. Journal of Central South University of Technology: Science and Technology, 2007, 38(5): 922-927.

[17] 吴晓威,张井岗,赵志诚.多变量系统的PID控制器设计[J].信息与控制,2008,37(3):316-321. Wu X W, Zhang J G, Zhao Z C. Design of a PID controller for multivariable systems[J]. Information and Control, 2008, 37(3): 316-321.

[18] 唐贤伦,张衡,李进.基于多Agent粒子群优化算法的电力系统经济负荷分配[J].电力系统保护与控制,2012,40(10):42-47. Tang X L, Zhang H, Li J. An economic load dispatch method of power system based on multi-agent particle swarm optimization algorithm [J]. Power System Protection and Control, 2012, 40(10): 42-47.

[19] 吕晓明,黄考利,连光耀.基于混沌粒子群优化的系统级故 障诊断策略优化[J].系统工程与电子技术,2010, 32(1):217-220. Lü X M, Huang K L, Lian G Y. Optimizing strategy of system level fault diagnosis based on chaos particle swarm optimization[J]. Systems Engineering and Electronics, 2010, 32(1): 217-220.

[20] 杨智,陈志堂,范正平.基于改进粒子群算法的PID控制器整定[J].控制理论与应用,2010,27(10):1335-1352. Yang Z, Chen Z T, Fan Z P. Tuning of PID controller based on improved particle swarm optimization[J]. Control Theory & Applications, 2010, 27(10): 1335-1352.

[21] 刘楠楠,石玉,范胜辉.基于Pareto最优的PID多目标优化设计[J].信息与控制,2010,39(4):385-396. Liu N N, Shi Y, Fan S H. PID multi-objective optimization design based on Pareto optimality[J]. Information and Control, 2010, 39(4): 385-396.