DOI: 10.3724/SP.J.1089.2010.11026

Journal of Computer-Aided Design & Computer Graphics (计算机辅助设计与图形学学报) 2010/22:9 PP.1538-1544

The Structure of W-System over Triangular Domains and its Application

W-system on L2 [0,1] is a kind of hybrid orthogonal function system constructed by untilizing Haar function and Legendre polynomials. In this paper, we extend the one-dimensional W-system to the case of two variables. The proposed 2D W-system over triangular domain is recursively constructed with Haar matrix and a group of orthonormal bivariate polynomials, using the squeezing, shifting and duplicating methods. The constructed hybrid orthogonal function system is composed of both continuous functions and functions with jumps. It turns out that the new function system is equivalent to the V-system over triangular domain, but its construction process is much simpler. Finally this paper shows that the orthogonal decomposition of a surface group can be realized by the proposed orthogonal function system, and the surface group can be perfectly reconstructed with the obtained frequency spectra.

Key words:triangular domain,triangulation,Haar function system,W-system,V-system

ReleaseDate:2014-07-21 15:25:43

[1] Razzaghi M. On the applications of orthogonal functions in pattern recognition[C]// Proceedings of SPIE. Bellingham: Society of Photo-Optical Instrumentation Engineers Press, 2005, 5757: 543-552

[2] Qi Dongxu, Feng Yuyu. On orthonormal complete system {U}[J]. Journal of Jilin University: Science Edition, 1984, 22(2): 21-31 (in Chinese) (齐东旭, 冯玉瑜. 关于正交完备系{U}[J]. 吉林大学学报: 自然科学版, 1984, 22(2): 21-31)

[3] Song R X, Ma H, Wang T J,et al. The complete orthogonal V-system and its applications[J]. Communications on Pure and Applied Analysis, 2007, 6(3): 853-871

[4] Ma Hui, Song Ruixia, Wang Xiaochun,et al. V-descriptor and B-spline[J]. Journal of Computer-Aided Design & Computer Graphics[J]. 2006, 18(11): 1717-1722 (in Chinese) (马 辉, 宋瑞霞, 王小春, 等. V描述子与B样条曲线[J]. 计算机辅助设计与图形学学报, 2006, 18(11): 1717-1722)

[5] Liang Yanyan, Song Ruixia, Qi Dongxu. Complete orthogonal function system V and points cloud fitting[J]. Journal of System Simulation, 2006, 18(8): 2109-2113 (in Chinese) (梁延研, 宋瑞霞, 齐东旭. 完备正交V-系统与点云数据拟合[J]. 系统仿真学报, 2006, 18(8): 2109-2113)

[6] Liang Yanyan, Song Ruixia, Wang Xiaochun,et al. Complete orthogonal V-system and it's application in geometrical information reconstruction[J]. Journal of Computer-Aided Design & Computer Graphics, 2007, 19(7): 871-875 (in Chinese) (梁延研, 宋瑞霞, 王小春, 等. 完备正交V-系统及其在几何信息重构中的应用[J]. 计算机辅助设计与图形学学报, 2007, 19(7): 871-875)

[7] Song R X, Liang Y Y, Wang X C,et al. Elimination of Gibbs phenomenon in computational information based on the V-system[C]// Proceedings of the 2nd International Conference on Pervasive Computing and Applications, Birmingham, 2007: 201-204

[8] Wang X C, Ma H. V-system with multiresolution property and its application in classification[C]// Proceedings of the IEEE International Conference on Information and Automation, Zhangjiajie, 2008: 1685-1690

[9] Song R X, Wang X C, Ou M F,et al. The Structure of V-system over triangulated domains[M]// Lecture Notes in Computer Science. Herdelberg: Springer, 2008, 4975: 563-569

[10] Song Ruixia. The construction of a new class of orthogonal functions over triangular domain[J]. Journal of System and Mathematical Sciences, 2008, 28(8): 949-960 (in Chinese) (宋瑞霞. 三角域上一类正交函数系的构造[J]. 系统科学与数学, 2008, 28(8): 949-960)

[11] Li Jian, Song Ruixia, Ye Mengjie,et al. Orthogonal reconstruction of 3D model based on V-system over triangular domain[J]. Chinese Journal of Computers, 2009, 32(2): 193-202 (in Chinese) (李 坚, 宋瑞霞, 叶梦杰, 等. 基于三角域上V-系统的三维几何模型的正交重构[J]. 计算机学报, 2009, 32(2): 193-202)

[12] Li Jian, Song Ruixia, Ye Mengjie,et al. V-system and expression of geometric group information in frequency domain[J]. Fournal of Software, 2008, 19(Suppl): 41-51 (in Chinese) (李 坚, 宋瑞霞, 叶梦杰, 等. V-系统与几何群组信息的频域表达[J]. 软件学报, 2008, 19(增刊): 41-51)

[13] Wang Xiaochun, Song Ruixia. Discrete representation and fast algorithm of a new class of orthogonal system[J]. Computer Engineering and Applications, 2008, 44(8): 40-44 (in Chinese) (王小春, 宋瑞霞. 一类正交函数系的离散表示及快速变换[J]. 计算机工程与应用, 2008, 44(8): 40-44)