﻿
 doi:

DOI: 10.3724/SP.J.1089.2010.11086

Journal of Computer-Aided Design & Computer Graphics (计算机辅助设计与图形学学报) 2010/22:9 PP.1497-1501

## Feature-preserving Mesh Smoothing Algorithm Based on the Weighted Least Squares

• Zhang Dongmei 1   Liu Ligang 1
• 1.Institute of Computer Graphics and Image Processing, Department of Mathematics, Zhejiang University,Hangzhou,310027,China

Abstract：
Mesh smoothing is often required in the inverse engineering and computer graphics applications where the acquisition data are usually very noisy. In this paper we propose a feature-preserving mesh smoothing algorithm based on the weighted least squares. A discrete quadratic energy related to the smoothed mesh vertices and normal is introduced which considers not only the overall smoothness of the mesh but also the preservation of the fine features of the original model. Then a quadratic objective function based on this energy is minimized by solving a sparse linear system to get the smoothed mesh. Experiments have shown that this linear, easy to implement algorithm can preserve sharp features without any user intervention, and can avoid shrinkages very well.

Key words：triangular mesh,smoothing,weighted least squares,feature-preserving,normal

ReleaseDate：2014-07-21 15:25:48

[1] Field D A. Laplacian smoothing and Delaunay triangulations[J]. Communications in Applied Numerical Methods, 1988, 4(6): 709-712

[2] Taubin G. A signal processing approach to fair surface design[C]// Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. Los Angeles: ACM Press, 1995: 351-358

[3] Desbrun M, Meyer M, Schroder P,et al. Implicit fairing of irregular meshes using diffusion and curvature flow[C]// Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. Los Angeles: ACM Press, 1999: 317-324

[4] Kobbelt L, Campagna S, Vorsatz J,et al. Interactive multi-resolution modeling on arbitrary meshes[C]// Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques. Orlando: ACM Press, 1998: 105-114

[5] Liu X G, Bao H J, Heng P A,et al. Constrained Fairing for Meshes[J]. Computer Graphics Forum, 2001, 20(2): 115-123

[6] Clarenz U, Diewald U, Rumpf M. Anisotropic geometric diffusion in surface processing[C]// Proceedings of the Conference on Visualization. Salt Lake City: IEEE Computer Society Press, 2000: 397-405

[7] Bajaj C L, Xu G L. Anisotropic diffusion of surfaces and functions on surfaces[J]. ACM Transactions on Graphics, 2003, 22(1): 4-32

[8] Jones T R, Durand F, Desbrun M. Non-iterative, feature-preserving mesh smoothing[C]// Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. San Diego: ACM Press, 2003: 943-949

[9] Hildebrandt K, Polthier K. Anisotropic filtering of non-linear surface features[J]. Computer Graphics Forum, 2004, 23(3): 391-400

[10] Zhao Huanxi, Xu Guoliang. Feature-preserving denoising of irregular mesh using inverse Harmonic mean curvature flow[J]. Journal of Computer-Aided Design & Computer Graphics, 2006, 18(3): 325-330 (in Chinese) (赵欢喜, 徐国良. 用反调和平均曲率流实现网格保特征平滑[J]. 计算机辅助设计与图形学学报, 2006, 18(3): 325-330)

[11] Fleishman S, Drori I, Cohen-Or. Bilateral mesh denoising[C]// Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. San Diego: ACM Press, 2003: 950-953

[12] Hu Guofei, Peng Qunsheng. Feature-preserving mesh smoothing algorithm based on vertex estimation[J]. Journal of Zhejiang University: Engineer Science, 2004, 38(12): 1535-1539 (in Chinese) (胡国飞, 彭群生. 基于顶点预测的特征保持网格光顺算法[J]. 浙江大学学报: 工学版, 2004, 38(12): 1535-1539)

[13] Peng J B, Strela V, Zorin D. A simple algorithm for surface denoising[C]// Proceedings of the Conference on Visualization. San Diego: IEEE Computer Society Press, 2001: 107-112

[14] Nealen A, Igarashi T, Sorkine O,et al. Laplacian mesh optimization[C]// Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia. Kuala Lumpur: ACM Press, 2006: 381-389

[15] Liu L G, Tai C L, Ji Z P,et al. Non-iterative approach for global mesh optimization[J]. Computer-Aided Design, 2007, 39(9): 772-782

[16] Farbman Z, Fattal R, Lischinski D,et al. Edge-preserving decompositions for multi-scale tone and detail manipulation[C]// Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. Los Angeles: ACM Press, 2008: 67:0-67:10

[17] Volodine T, Vanderstraeten D, Roose D. Smoothing of meshes and point clouds using weighted geometry-aware bases[C]// Proceedings of the Geometric Modeling and Processing. Pittsburgh: IEEE Computer Society Press, 2006: 687-693

[18] Yagou H, Ohtake Y, Belyaev A. Mesh Smoothing via Mean and Median Filtering Applied to Face Normals[C]// Proceedings of the Geometric Modeling and Processing. Wako: IEEE Computer Society Press, 2002: 124-131