doi:

DOI: 10.3724/SP.J.1146.2009.00751

Journal of Electronics & Information Technology (电子与信息学报) 2010/32:3 PP.714-727

An Overview to FPGA Device Design Technologies


Abstract:
As a programmable logic device, Field Programmable Gate Array(FPGA)has evolved from merely a peripheral component in an electronic design to become a core processing element of digital systems over the last two decades. It finds extensive applications in many fields, such as computer hardware, communication, aviation, spaceflight and automobile-electronics, etc. The FPGA chip design research achieves a significant progress with the advance of semi-conductor technologies. This survey reviews the past history, presents status and future trend in the ever quest for high performance FPGAs.

Key words:Field Programmable Gate Arrays (FPGA),VLSI,Programmable Logic logic Devicedevice,CMOS

ReleaseDate:2014-07-21 15:13:44



[1] Slimane-Kadi M, Brasen D, and Saucier G. A fast-FPGA prototyping system that uses inexpensive high-performance FPIC. Proc. 2nd Annual Workshop on FPGAs, Berkeley, 1994:147-156.

[2] Chinnery D and Keutzer K. Closing the Gap Between ASIC and Custom Tools and Techniques for High-Performance ASIC Design. Netherland: Kluwer Academic Publishers, 2002:157-158.

[3] Altera Corporation. Hardcopy series handbook. http://www. altera.com.cn/literature/hb/hrd/hc_handbook.pdf, 2008, 9.

[4] Kuon I and Rose J. Measuring the gap between FPGAs and ASICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007, 26(2): 203-215.

[5] Hamdy E and McCollum J, et al. .Dielectric based antifuse for logic and memory IC. International Electron Devices Meeting Technical Digest, San Francisco, 1988: 786-789.

[6] Birkner J and Chan A, et al.A very-high-speed field-programmable gate array using metalto-metal antifuse programmable elements. Microelectronics Journal, 1992, 23(7): 561-568.

[7] Birkner J and Chua H T. Programmable array logic circuit. U.S.Patent, 4124899, 1978.

[8] Brown S and Rose J. FPGA and CPLD architectures. A tutorial. IEEE Design and Test of Computers, 1996, 12(2): 42-57.

[9] Frohman-Dentchkowsky D. A fully-decoded 2048-bit electrically programmable MOS ROM. IEEE International Solid State Circuits Conference Digest of Technical Papers, Philadelphia, 1971:, 80-81.

[10] Guterman D C and Rimawi L H, et al. An electrically alterable nonvolatile memory cell using a floating-gate structure. IEEE Transactions on Electron Devices, 1997, 26(4): 576-586.

[11] Cuppens R and Hartgring C D, et al. An EEPROM for microprocessors and custom logic. IEEE Journal of Solid-State Circuits, 1985, 20(2): 603-608.

[12] Scheibe A and Krauss W. A two-transistor SIMOS EAROM cell. IEEE Journal of Solid-State Circuits, 1980, 15(3): 353-357.

[13] Carter W and Duong K, et al. A user programmable reconfiguration gate array. Proceedings of the IEEE Custom Integrated Circuits Conference, Boston, 1986: 233-235.

[14] Wahlstrom S E. Programmable logic arrays — cheaper by the millions. Electronics, 1967, 40(25): 90-95.

[15] Actel Corporation. IGLOO low-power flash FPGAs. http://www.actel.com/documents/IGLOO_HB.pdf, 2009:11.

[16] Altera Corporation. Stratix II GX device handbook. http://www.altera.com/literature/hb/stx2gx/stxiigx handbook. pdf, 2005, 10.

[17] Xilinx. Virtex-4 family overview. http://china.xilinx.com /support/documentation/data_sheets/ds112.pdf , 2007, 9.

[18] Actel Corporation. ProASIC3 flash family FPGAs. http:// www.actel.com/documents/PA3 DS.pdf, 2005, 10.

[19] Xilinx. Virtex-6 Family Overview. http://china.xilinx.com/ support/documentation/data_sheets/ds150.pdf, 2009, 11.

[20] Actel Corporation. SX-A Family FPGAs datasheet. http://www.actel.com/documents/SXA_DS.pdf, 2007, 2.

[21] Shih C and Lambertson R, et al. Characterization and modeling of a highly reliable metal- to-metal antifuse for high-performance and high-density field-programmable gate arrays. Proceedings of the 1997 IEEE International Reliability Physics Symposium, Denver, 1997:25-33.

[22] Marple D and Cooke L. An MPGA compatible FPGA architecture. Proceedings of the IEEE Custom Integrated Circuits Conference, Boston, 1992:421-422.

[23] Plessey Semiconductor. ERA60100 preliminary data sheet. Swindon, England, 1989.

[24] Gamal A E and Greene J, et al. An architecture for electrically configurable gate arrays. IEEE Journal of Solid-State Circuits, 1989, 24(2): 394-398.

[25] Wong S C, So H C, Ou J H, and Costello J. A 5000-gate CMOS EPLD with multiple logic and interconnect arrays. Proceedings of the IEEE Custom Integrated Circuits Conference, San Diego, 1989:, 581-584.

[26] Betz V, Rose J, and Marquardt A., Architecture and CAD for Deep-Submicron FPGAs. Nehterland: Kluwer Academic Publishers, 1999: 83-87.

[27] Brown S and, Rose J. FPGA and CPLD Architectures: A Tutorial. IEEE Design & Test of Computers,. 1998, 13(2): 42-57.

[28] Cong J, Xie M, and Zhang Y. An enhanced multilevel routing system. Proc. International Conference on CAD, San Jose, 2002:, 51-58.

[29] Lin S P and Chang Y W. A novel framework for multilevel routing considering routability and performance. Proc. International Conference on CAD, San Jose, 2002:, 44-50.

[30] Ahmed E, et al. The effect of logic block granularity on Deepdeep-submicron FPGA performance and density. [MA dissertation], University of Toronto, Department of Electrical and Computer Engineering, 2001.

[31] Ahmed E and Rose J. The effect of LUT and cluster size on deep-submicron FPGA performance and density. Proceedings of the 2000 ACM/SIGDA Eighth International Symposium on Field Programmable Gate Arrays, Meonterey, 2000: 3-12.

[32] Ahmed E and Rose J. The effect of LUT and cluster size on deep-submicron FPGA performance and density. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2004, 12(3): 288-298.

[33] 李威, 杨海钢, 龚萧. FPGA连线连接盒中基于信息熵优化的结构设计. 计算机辅助设计与图形学学报, 2006, 21(2): 203-208.

[34] Gamal A E, et al. Two-dimensional stochastic model for interconnections in master slice integrated circuits. IEEE Transactions on Circuits and Systems, 1981, 28(2): 127-138.

[35] Roy K and Mehendale M. Optimization of channel segmentation for channeled architecture FPGAs. Proceedings of the IEEE Custom Integrated Circuits Conference, Boston, 1992:441-444.

[36] Greene J, Roychowdhury V, Kaptanoglu S, and El Gamal A. Segmented channel routing. Proceedings of ACM/IEEE Design Automation Conference, Orlando, 1990:567-572.

[37] Aggarwal A and Lewis D. Routing architectures for hierarchical field programmable gate arrays. IEEE International Conference on Computer Design, Cambrige, 1994:475-478.

[38] Brown S D, Francis R, Rose J, and Vranesic Z. Field- Programmable Gate Arrays. Netherland: Kluwer Academic Publishers, 1992: 127-133.

[39] Actel Corporation. 40MX and 42MX FPGA Families. http://www.actel.com/documents/MX_DS.pdf, 2009, 4.

[40] Actel Corporation. ACT 1 series FPGAs. http://www. actel.com/documents/ACT1_DS.pdf, 1996, 4.

[41] Tsu W, Macy K, and Joshi A, et al.HSRA: High-speed, hierarchical synchronous reconfigurable array. Proceedings of ACM/SIGDA International Symposium on Field- Programmable Gate Arrays, Meonterey, 1999:125-134.

[42] Altera Corporation. FLEX 10K embedded programmable logic device family. http://www.altera.com.cn/literature /ds/dsf10k.pdf, 2003, 1.

[43] Altera Corporation. APEX 20K programmable logic device family data sheet. http://www.altera.com.cn/literature /ds/apex.pdf, 2004, 3.

[44] Altera Corporation. APEX II programmable logic device family. http://www.altera.com.cn/literature/ds/ds_ap2.pdf, 2002, 8.

[45] Fan H, Liu J, Wu Y L, and Cheung C C. On optimal hyperuniversal and rearrangeable switch box designs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2003, 22(12): 1637-1649.

[46] Rose J and, Brown S. Flexibility of interconnection structures for field programmable gate arrays. IEEE Journal of Solid-State Circuits, 1991, 26(3): 277-282.

[47] Young S P, Bauer T J, Chaudhary K, and Krishnamurthy S. FPGA repeatable interconnect structure with bidirectional and unidirectional interconnect lines. US Patent, 5,942,913, 1999.

[48] Lemieux G, Lee E, Tom M, and Yu A. Directional and single-driver wires in FPGA interconnect. Proceedings of International Conference on Field-Programmable Technology, Brisbane, 2004:41-48.

[49] 杨海钢, 李兴政. 可编程逻辑器件的对称型连线通道. 中国发明专利, 200510086897.5, 2005.

[50] Zhou C and, Wu T L. Optimal MST-based graph algorithm on FPGA segmentation design. Proceedings of International Conference on Communications, Circuits, and Systems, Chengdu, 2004,2: 1290-1294.

[51] Li X Z, Yang H G, and Zhong H. Use of VPR in Design of FPGA Architecture. The 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT- 2006), Shanghai, 2006:, 1880-1882.

[52] Betz V, and Rose J. FPGA routing architecture: Segmentation and buffering to optimize speed and density. Proceedings of ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Meonterey, 1999:140-149.

[53] Lewis D, Betz V, and Jefferson D, et al.The Stratix routing and logic architecture. Proceedings of the 2003 ACM/SIGDA Eleventh International Symposium on Field Programmable Gate Arrays, Meonterey, 2003: 12-20.

[54] Wu Y L and, Marek-Sadowska M. Orthogonal greedy coupling — a new optimization approach for 2-D field- programmable gate arrays. Proceedings of ACM/IEEE Design Automation Conference, San Francisco, 1995:568-573

[55] Chang Y W, Wong D F, and Wong C K. Universal switch-module design for symmetric-array-based FPGAs. Proceedings of the 1996 ACM Fourth International Symposium on Field-Programmable Gate Arrays, Meonterey, 1996:80-86.

[56] Chang Y W, Wong D F, and Wong C K. Universal switch modules for FPGA design. ACM Transactions on Design Automation Electronic Systems, 1996, 1(1): 80-101.

[57] Wilton S. Architectures and algorithms for field-programmable gate arrays with embedded memories. [Ph.D.dissertation], University of Toronto, Department of Electrical and Computer Engineering, 1997.

[58] Masud M I and Wilton S. A new switch block for segmented FPGAs. Proceedings of International Workshop on Field Programmable Logic and Applications, Glasgow, 1999:274-281.

[59] Lemieux G and Lewis D. Analytical framework for switch block design. Proceedings of International Symposium on Field Programmable Logic and Applications, Montpellier, 2002:122-131.

[60] Rabaey J M, Chandrakasan A, and Nikolic B. Digital Integrated Circuits: A Design Perspective. second edition, USA: Pearson Education Inc, 2003:151-173.

[61] Wong H Y, Cheng L, Lin Y, and He L. FPGA device and architecture evaluation considering process variations. Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, Washington DC, 2005:19-24.

[62] Nabaa G, Azizi N, and Najm F N. An adaptive FPGA architecture with process variation compensation and reduced leakage. Proceedings of the 43rd Annual Conference on Design Automation, New York, 2006:624-629.

[63] Sedcole P and Cheung P Y K. Parametric yield in FPGAs due to withindie delay variations: A quantitative analysis. Proceedings of the 2007 ACM/SIGDA 15th International Symposium on Field Programmable Gate Arrays, New York, 2007:178-187.

[64] Lodi A, Ciccarelli L, Loparco D, Canegallo R, and Guerrieri R. Low leakage design of LUT-based FPGAs. Proc. European Solid-State Circuits Conf., Grenoble, 2005:153-156.

[65] Lodi A, Ciccarelli L, and Giansante R. Combining low- leakage techniques for FPGA routing design. Proc. 13th ACM/SIGDA Int. Symp. Field Programmable Gate Arrays, Meonterey, 2005:208-214.

[66] Rahman A and Polavarapuv V. Evaluation of low-leakage design techniques for field programmable gate arrays. Proceedings of ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Meonterey, 2004:23-30.

[67] Shang L, Kaviani A, and Bathala K. Dynamic power consumption in Virtex-II FPGA family. Proceedings of ACM/SIGDA International Symposium on Field- Programmable Gate Arrays, Meonterey, 2002:157-164.

[68] Friedman E. Clock Distribution Networks in Synchronous Digital Integrated Circuits. Proceedings of the IEEE, 2001, 89(5): 665-692.

[69] Tam S. Clock generation and distribution for the 130-nm itanium 2 processor with 6-MB Onon-die L3 cache microprocessor. IEEE Journal Solid-State Circuits, 2004, 39(4): 636-642.

[70] Keating M and Bricaud P. Reuse Methodology Manual for System-on-a-Chip Designs. Third Edition, USA, Springer, 2002:10-40.

[71] Birnbaurn M and Johnson C C. VSIA quality metrics for IP and SoC. Proc. of the 2nd IEEE ISQED, San Jose, 2001:279-283.

[72] Altera Corporation. Stratix IV Device Handbook. http://www.altera.com.cn/literature/hb/stratix-iv/stratix4_handbook.pdf, 2009, 11.

[73] Michael J and Sebastian S. Application-Specific Integrated Circuits. USA: Addision-Wesley, 2001:204-206.

[74] Xilinx. Virtex-5 user guide. http:// china. xilinx. com/ support/documentation/data_sheets/ds112.pdf, 2009, 6.

[75] Lewis D and Ahmed E, et al.The Stratix II logic and routing architecture. Proceedings of the 2005 ACM/SIGDA 13th International Symposium on Field-Programmable Gate Arrays, New York, 2005:14-20.

[76] Altera Corporation. Stratix III FPGA vs. Xilinx Virtex-5 devices: architecture and performance comparison.http:// www.altera.com.cn/literature/wp/wp-01007_CN.pdf, 2007, 10.

[77] Xilinx. Advantages of virtex-5 FPGA 6-input LUT architecture. http://china.xilinx.com/support/documentation/ white_papers/c_wp284.pdf, 2007, 12.

[78] Kafafi N, Bozman K, and Wilton S. Architectures and algorithms for synthesizable embedded programmable logic cores. Proceedings of the 2003 ACM/SIGDA eleventh international symposium on Field programmable gate arrays, Meonterey, 2003: 3-11.

[79] Lysecky R and Vahid F. A study of the speedups and competitiveness of FPGA soft processor cores using Dynamic hardware/software partitioning. Proceeding of the conference on Design, Automation and Test in Europe, Paris, 2005, 1: 18-23.

[80] Biswas P, Banerjee S, Dutt N, Ienne P, and Pozzi L. Performance and energy benefits of instruction set extensions in an FPGA soft Corecore. Proceedings of International Conference on VLSI Design, Hyderabad, 2006: 651-656.

[81] Cong J, Fan Y, Han G, and Zhang Z. Application-specific instruction generation for configurable processor architectures. Proceedings of International Symposium on Field-Programmable Gate Arrays, Meonterey, 2004: 183-189.

[82] Yiannacouras P, Steffan J G, and Rose J. Application-specific customization of soft processor microarchitecture. Proceedings of International Symposium on Field- Programmable Gate Arrays, Meonterey, 2006: 201-210.

[83] Altera Corporation. 40-nm FPGA: architecture and performance comparison. http://www.altera.com.cn/ literature/wp/wp-01088-40nm-architecture-performance-com-mparison_CN.pdf, 2008, 12.

[84] Kao J, Narendra S, and Chandrakasan A. Sub-threshold leakage modeling and reduction techniques. Proc. IEEE/ ACM Int. Conf. Computer-Aided Design, San Jose, 2002: 141-148.

[85] Lodi A, Ciccarelli L, and Guerrieri R. Low Leakage Techniques for FPGAs. IEEE Journal of Solid-State Circuits, 2006, 41(7): 1662-1672.

[86] Altera Corporation. Stratix IV FPGA power management and advaentages. http://www.altera.com.cn/literature/wp/wp-01059_CN.pdf, 2008, 5.

[87] Wong C G, Martin A J, and Thomas P. An architecture for asynchronous FPGAs. IEEE International Conference on Proceedings 2003, Tokyo, 2003: 170-177.

[88] Teifel J and Manohar R. Highly pipelined asynchronous FPGAs. Proceedings of the 2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays, New York, 2004: 133-142.

[89] Teifel J and Manohar R. An asynchronous dataflow FPGA architecture. IEEE Transactions on Computers, 2004, 53(11): 1376-1392.

[90] Hauck S, Burns S, Borriello G, and Ebeling C. An FPGA for implementing asynchronous circuits. IEEE Design and Test of Computers, 1994, 11(3): 60-69.

[91] Achronix Semiconductor Corporation. Speedster FPGA family. www.acaltechnology.com/documents/ speedster_ product_brif_pb001.pdf, 2008, 9.

[92] Davis W R,Wilson J, Xu J, Hua H, Mineo C, Sule A M, Steer M, and Ftanzon P D. Demystifying 3D Ics: the pros and cons of going vertical. IEEE Design and Test of Computers, 2005, 22(6): 498-510.

[93] Ababei C, Maidee P, and Bazrgan K. Exploring potential benefits of 3D FPGA integration. Proceedings of Field Programmable Logic and Application, Berlin/Heidelberg, 2004: 874-880.

[94] Gayasen A, Narayanan V, Kandemir M, and Rahman A. Designing a 3-D FPGA: Switch box zrchitecture and thermal issues. IEEE Transacions on Very Large Scale Integration (VLSI) Systems, 2008, 16(7): 882-893.

[95] Wu G M, Shyu M, and Chang Y W. Universal switch blocks for three-dimensional FPGA design. IEE Proc.-Circuits Devices Systemts.,2004, 151(1): 49-57.

[96] Gayasen A, Vijaykrishnan N, Kandemir M, and Rahman A. Switch box architectures for three-dimensional FPGAs. Proceedings of 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06), NAPA, 2006: 335-336.

[97] Lopez-Buedo S, Garrido J, and BoemoE. Dynamically inserting, operating, and eliminating thermal sensors of FPGA-based systems. IEEE Transacions on Components Package Technology, 2002, 25(4): 561-566.

[98] Velusamy S, et al.Monitoring temperature in FPGA based SoCs. Int. Conf. Comput. Des. (ICCD), San Jose, 2005: 634-640.

[99] Sankaranarayanan K, Velusamy S, Stan S, and Skadron K. A case for thermal-aware floorplanning at the microarchitectural level.Journal of Instruction-Level Parallelism. 2005, Vol. 7: 1-16.

[100] Lee S W, et al.A three-terminal carbon nanorelay. Nano Lett., 2004, 4(10): 2027-2030.

[101] Chakraborty R S and, Bhunia S. Hybriddization of CMOS with CNT-Based nano electromechanical Sswitch for low leakage and robust circuit design using nanocsaled CMOS devices. IEEE Transacions on Circuits and Systems, 2007, 54(11): 2480-2488.

[102] Chua L O. Memristor—the missing circuit element. IEEE Transactions on Circuit Theory, 1971, 18(5): 507-519.

[103] Strukov, Dmitri B, and Snider, et al.The missing memristor found. Nature, 2008, 453(1): 80-83.