doi:

DOI: 10.3724/SP.J.1146.2009.00091

Journal of Electronics & Information Technology (电子与信息学报) 2010/32:1 PP.219-226

Overview on Image Quality Assessment Methods


Abstract:
Image Quality Assessment (IQA) is a hot research area in the field of image processing. In this paper, objective and subjective IQA methods are reviewed, and more attention is paid to the former. PSNR and MSE, which are commonly used to assess the quality, are analyzed in detail and their defects are given. The models based on error sensitivity and structure distortion of images are two critical methods in IQA, and the survey presents their key techniques and challenge problems. The reduced reference and no reference methods are also presented in this survey. Based on the number of view, IQA are classified into two major categories, namely, monoscopic image IQA and stereoscopic image IQA. This survey also makes an introduction of the stereoscopic image IQA. Finally, the survey lists several perspective sub-fields and topics in IQA progress.

Key words:Image quality assessment,Human Visual System(HVS),Structural similarity,3D image quality assessment

ReleaseDate:2014-07-21 15:07:11



[1] VQEG. Final report from VQEG on the validation of objective models of video quality assessment[OL].(2000-3-15). Http://www.its.bldrdoc.gov/vqeg/projects/frtv_phaseII/downloads/VQEGII_Final_Peport.pdf.

[2] Wang Z, Liang L, and Alan C B. Video quality assessment using structural distortion measurement[C]. International Conference on Image Processing, Rochester, NY, USA, 2002, 3: 65-68.

[3] Yu Z, Wu H R, and Winkler S, et al. Vision-model-based impairment metric to evaluate blocking artifact in digital video[J]. Proceeding of the IEEE, 2002, 90(1): 154-169.

[4] Nill N B and Bouzas B H. Objective image quality measure derived from digital image power spectra[J]. IEEE Signal Processing Letter, 2002, 9(3): 388-392.

[5] Wang Z, Alan C B, and Hamid R S. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.

[6] ITU-R Recommendation BT.500-10. Methodology for the subjective assessment of the quality of the television pictures[S], 2000.

[7] Baroncint V. New tendencies in subjective video quality evaluation[J]. IEICE Transactions on Fundamentals, 2006, 89(11): 2933-2937.

[8] Hoffmann H, Itagaki T, and Wood D, et al. A novel method for subjective picture quality assessment and further studies of HDTV formats[J]. IEEE Transctions on Broadcasting, 2008, 54(1): 1-13.

[9] Richardson I E. Fast subjective video quality measurement with user feedback[J]. IEE Electronics Letters, 2004, 40(13): 799-800.

[10] Russo F, De Angelis A, and Carbone P. A vector approach to quality assessment of color images[C]. IEEE International Instrumentation and Measurement Technology Conference, Victoria, BC, Canada, 2008: 814-818.

[11] Avcibas I, Sankar B, and Saygood K. Statistical evaluation of image quality measures[J]. Journal of Electronic Imaging, 2002, 11(2): 206-223.

[12] 汪孔桥, 沈兰荪, 刑昕. 一种基于视觉兴趣性的图像质量评价方法[J]. 中国图象图形学报, 2000, 5(4): 300-303. Wang Kong-qiao, Shen Lan-sun, and Xing Xin. A quality assessment method of image based on visual interests[J]. Journal of Image and Graphics, 2000, 5(4): 300-303.

[13] Miyahara M, Kotani K, and Algazi V R. Objective picture quality scale (PQS) for image coding[J]. IEEE Transactions on Communications, 1998, 46(9): 1215-1226.

[14] 王楠楠, 李桂苓. 符合人眼视觉特性的视频质量评价模型[J].中国图象图形学报, 2001, 16(6): 523-527. Wang Nan-nan and Li Gui-ling. Video quality evaluation models based on human visual properties[J]. Journal of Image and Graphics, 2001, 16(6): 523-527.

[15] Tan K T, Ghanbari M, and Pearson D E. An objective measurement tool for MPEG video quality[J]. Signal Processing, 1998, 70(3): 279-294.

[16] 韦学辉, 李均利, 陈刚. 一种图像感知质量模型[J]. 计算机辅助设计与图形学学报, 2007, 19(12): 1540-1545. Wei Xue-hui, Li Jun-li, and Chen Gang. A perception based image quality assessment model[J]. Journal of Computer- Aided Design & Computer Graphics, 2007, 19(12): 1540-1545.

[17] Winkler S. A perceptual distortion metric for digital color video[C]. Proceedings SPIE Human Vision and Electronic Imaging IV, San Jose, USA, Jan. 1999, 3644: 175-184.

[18] 马苗, 郝重阳. 基于灰色关联分析的图像保真度准则[J]. 计算机辅助设计与图形学学报, 2004, 16(7): 976-983. Ma Miao and Hao Chong-yang. Image fidelity criterion based on grey relational analysis[J]. Journal of Computer-Aided Design & Computer Graphics, 2004, 16(7): 976-983.

[19] 朱里, 李乔亮, 张婷等. 基于结构相似性的图像质量评价方法[J]. 光电工程, 2007, 34(11): 108-113. Zhu Li, Li Qiao-liang, and Zhang Ting, et al. Metric of image quality based on structural similarity[J]. Opto-Electronic Engineering, 2007, 34(11): 108-113.

[20] Wang Z and Alan C. Structural approached to image quality assessment[M]. In Handbook of Image and Video Processing, Academic Press, 2005: 1-33.

[21] 黄大江, 郁梅, 杨铀, 蒋刚毅. 基于相似度的立体图像对中右视点图像质量评价方法[J]. 光子学报, 2008, 37(8): 1693-1697. Huang Da-jiang, Yu Mei, Yang You, and Jiang Gang-yi. Right view image evaluation method for stereoscopic image pair based similarity measure[J]. Acta Photonica Sinica, 2008, 37(8): 1693-1697.

[22] 叶盛楠, 苏开娜, 肖创柏等. 基于结构信息提取的图像质量评价[J]. 电子学报, 2008, 36(5): 856-860. Ye Sheng-nan, Su Kai-na, and Xiao Chuang-bai, et al. Image quality assessment based on structural information extraction[J]. Acta Electronica Sinica, 2008, 36(5): 856-860.

[23] 王涛, 高新波, 张都应. 一种基于内容的图像质量评价测度[J]. 中国图象图形学报, 2007, 12(6): 1002-1007. Wang Tao, Gao Xin-bo, and Zhang Du-ying. An objective content-based image quality assessment metric[J]. Journal of Image and Graphics, 2007, 12(6): 1002-1007.

[24] 杨婉, 吴乐华, 范晔等. 数字图像客观质量评价方法研究[J]. 通信技术, 2008, 41(7): 244-246. Yang Wan, Wu Le-hua, and Fan Ye, et al. Study on objective digital image quality assessment methods[J]. Communications Technology, 2008, 41(7): 244-246.

[25] Yang B, Lei L, and J Yang L. HVS-based structural image quality assessment model[C]. Proceeding of the 7th world congress on Intelligent Control and Automation, Chongqin, China, June 25-27, 2008: 8497-8500.

[26] Wang B, Wang Z B, and Liao Y P, et al. HVS-based structural image quality assessment[C]. Proceeding of ICSP, China, 2008: 1194-1197.

[27] Mohammad H K, Shabnam S, and Alireza N A, et al. Reduced reference watermark-based image transmission quality metric[C]. Proc. ISCCSP, Malta, 2008: 526-531.

[28] Wang Z, Wu G, and Sheikh H R, et al. Quality-aware images[J]. IEEE Transactions on Image Processing, 2006, 15(6): 1680-1689.

[29] Wolf S and Pinson M H. Spatial-temporal distortion metrics for in-service quality monitoring of any digital video system[C]. Proc. SPIE. Boston, MA, USA, 1999, 3845: 266-277.

[30] Carnec M, Le Callet P, and Barba D. New perceptual quality assessment method with reduced reference for compressed images[C]. In Proceedings of SPIE, Lugano, 2003: 1582-1593.

[31] Wang Z and Simoneclli E P. Reduced-reference image quality assessment using a wavelet-domain natural image statistic model[C]. Proceedings of SPIE-IS&T Electronic Imaging - Human Vision and Electronic Imaging X, San Jose, CA, 2005: 149-159.

[32] 蒋刚毅, 王旭, 杨铀, 郁梅. 基于Contourlet变换的质降参考图像质量评价模型[J]. 光电子激光(录用), 2009. Jiang Gang-yi, Wang Xu, Yang You, and Yu Mei. Contourlet-based reduced-reference image quality assessment metric[J]. Journal of Optoelectonics Laser, accepted, 2009.

[33] Wang Z, Bovik A C, and Evans B L. Blind measurement of blocking artifacts in images[C]. IEEE International Conference on Image Processing, Vancouver, BC, Canada, 2000, 3: 981-984.

[34] Sheikh H R, Bovik A C, and Cormack L. No-reference quality assessment using natural scene statistics: JPEG2000[J]. IEEE Transactions on Image Processing, 2005, 14(11): 1918-1927.

[35] Muijs R and Kirenko I. A no-reference blocking artifact measure for adaptive video processing[C]. EUSIPCO2005, 2005.

[36] Liu H T and Heynderickx I. A no-reference perceptual blockiness metric[C]. Proc. ICASSP, 2008: 865-868.

[37] Suresh S, Venkatesh Babu R, and Kim H J. No-reference image quality assessment using modified extreme learning machine classifier[J]. Applied Soft Computing, 2008. (Article in Press) doi:10.1016/j.asoc.2008.07.005

[38] Venkatesh Babu R, Suresh S, and Perkis A. No-reference JPEG image quality assessment using GAP-RBF[J]. Signal Processing, 2007, 87(6): 1493-1503.

[39] ITU, Recommendation BT.1438. Subjective Assessment of Stereoscopic Television Pictures[S], 2000.

[40] Stelmach L B and Tam W J. Stereoscopic image coding: Effect of disparate image-quality in left- and right eye views[J]. Signal Processing: Image Communication, 1998, 14(1-2): 111-117.

[41] Stelmach L, Tam W J, and Meegan D, et al. Stereo image quality: effects of mixed spatial-temporal resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10(2): 188-193.

[42] IJsselsteijn W, De Ridder H, and Vliegen J. Subjective evaluation of stereoscopic images: Effects of camera parameters and display duration[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10(2): 225-233.

[43] Seuntiëns P, Meesters L, and Ijsselsteijn W. Perceived quality of compressed stereoscopic images: Effects of symmetric and asymmetric JPEG coding and camera separation[J]. ACM Transactions on Applied Perception, 2007, 3(2): 95-109.

[44] Boev A, Gotchev A, and Egiazarian K. Towards compound stereo-video quality metric: A specific encoder-based framework[C]. IEEE Southwest Symposium on Image Analysis and Interpretation, Denver, CO, 2006: 218-222.

[45] Horita Y, Kawai Y, and Minami Y, et al. Quality evaluation model of coded stereoscopic color image[C]. Proceedings of SPIE, Perth, Aust, 2000, 4067: 389-398.

[46] Benoit A, Callet P L, and Campisi P, et al. Quality assessment of stereoscopic image[J]. EURASIP Journal on Image and Video Processing, 2008, (2008): 1-13.

[47] ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6. Image and depth quality of asymmetrically coded stereoscopic video for 3D-TV, W094, 23rd Meeting, San Jose, California, USA, Apr., 2007.

[48] Wang X, Yu M, Yang Y, and Jiang G. Research on subjective stereoscopic image quality assessment[C]. Proc. SPIE Vol. 7255, no.725509, San Jose, California, USA, Jan., 2009.