doi:

DOI: 10.3724/SP.J.1231.2010.06624

Journal of Fisheries of China (水产学报) 2010/34:4 PP.500-507

Genetic structure and genetic diversity analysis of four consecutive breeding generations of large yellow croaker (Pseudosciaena crocea) using microsatellite markers


Abstract:
Thirteen microsatellite markers were used to analyze the genetic structure and genetic diversity of the breeding populations “Guanjingyang Youkuai 01” from F1 to F4. The results showed that the genetic diversity of the breeding population was decreasing, the average polymorphism information content (PIC) of the 13 microsatellite markers decreased from 0.638 to 0.524, the average allele number from 5.462 to 4.308, the average heterozygosity from 0.779 to 0.532, and the average Shannon’s gene diversity index from 1.356 to 1.092, respectively. The genetic identity between F1 and its descendant generations (F2, F3, F4) decreased (from 0.719 4 to 0.581 3) while the genetic distance increased. The genetic identity between the adjacent generations increased and the FST values decreased (0.061 9 in F1-F2; 0.051 1 in F2-F3; 0.047 5 in F3-F4). The allele frequency of the loci LYC0002 and LYC0054 changed regularly in the four breeding generations and they might correlate with the selected traits, which should be proved by further research. Our study suggested that the selective breeding work was efficient, some adverse genes were phased out, the hereditary basis of the population was getting pure and the genetic structure would be stable with the continuation of the breeding work.

Key words:Pseudosciaena crocea,microsatellite,genetic diversity,genetic structure,selective breeding population

ReleaseDate:2014-07-21 15:27:38



[1] 苏永全, 张彩兰, 王军, 等. 大黄鱼养殖[M]. 北京: 海洋出版社, 2004: 1-10.

[2] Wang Z Y, Xie F J, Cai M Y, et al. Aquaculture and breeding of large yellow croaker in China[R]. San Antonio: Aquaculture 2007, 2007: 973.

[3] 王小平. 闽东大黄鱼养殖业现状及其发展对策[J]. 福建水产, 2000,6 (2): 52-57.

[4] 林利民, 王秋荣, 王志勇, 等. 不同家系大黄鱼肌肉营养成分的比较[J]. 中国水产科学, 2006, 13 (2): 286-291.

[5] Wang Z Y, Tsoi K H, Chu K H. Applications of AFLP technology in genetic and phylogenetic analysis of penaeid shrimp[J]. Biochemical Systematics and Ecology, 2004, 32(4): 399-407.

[6] Yeh F, Yang R C, Boyle T. POPGENE:A User-friendly shareware for population genetic analysis[CP/DK]. Edmonton:Molecular and Biotechnology Center, University of Alberta, 1997.

[7] Laval E L G, Schneider S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis[CP/DK]. Evolutionary Bioinformatics Online, 2005, 1:47-50.

[8] Botstein D,White R L,Skolnick M,et al.Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32(3):314-331.

[9] Kimura M, Crow J F.The number of alleles that can be maintained in a finite population[J]. Genetics,1964,49:725-738.

[10] Shannon C E, Weaver W. The mathematical theory of communication[M]. USA: Ubana University of Illinois Press, 1949.

[11] Nei M.Estimation of average heterogosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 19: 583-590.

[12] 张天时,王清印,刘萍,等.中国对虾(Fenneropenaeus chinensis)人工选育群体不同世代的微卫星分析[J]. 水产学报, 2005,29(1):6-12.

[13] 颉晓勇, 李思发, 蔡完其, 等. 吉富品系尼罗罗非鱼选育过程中遗传变异的微卫星分析[J]. 水产学报,2007, 31(3):385-390.

[14] Zheng K, Lin K, Liu Z,et al.Comparative microsatellite analysis of grass carp genomes of two gynogenetic groups and the Xiangjiang river group[J]. Journal of Genetics and Genomics, 2007, 34 (4): 321-330.

[15] 李思发, 陈林, 蔡完其. 吉奥罗非鱼(新吉富罗非鱼♀×奥利亚罗非鱼♂)和4个近缘遗传型罗非鱼的遗传差异的RAPD, SSR比较分析[J]. 水产学报, 2008, 32 (5): 657-664.

[16] 叶小军, 王志勇, 刘贤德, 等. 大黄鱼连续两代人工雌核发育群体的微卫星标记分析[J]. 水生生物学报, 2009, 33(6): 121-128.

[17] Barker J S F.A global protocol for determining genetic distances among domestic livestock breed: proceedings of the 5th world congress on genetics applied to livestock production[C]. Canada: University of Guelph, 1994, 21: 501-508.

[18] Wright S. Variability within and among natural populations[M]. Chicago: The University of Chicago Press, 1978.

PDF