doi:

DOI: 10.3724/SP.J.1231.2013.38772

Journal of Fisheries of China (水产学报) 2013/37:12 PP.1873-1885

Review and application of geometric morphometrics in aquatic animals


Abstract:
Geometric morphometrics(GM)originated from late 1980s to early 1990s in last century.It differed from the traditional measurement,mainly focusing on the variability of shape.With relative theory foundation,we were separating shape from size,explaining the intrinsic results using multivariate analysis.This new method was meaningful to the organism with fixed and stable shape,and also widely used in many fields.Generally,aquatic animals were surrounded by hard structures with relatively invariable shape.Meanwhile,they played different important roles in diversified waters.This paper reviewed the shape analysis of aquatic animals with geometric morphometrics in the recent decades,briefly described the developing process of this new method,explained the principles of outline and landmark method,and introduced methodology and some relevant software.Then we retrospected the application of invertebrate and vertebrate morphological shape in aquatic area.The result showed that this new approach was accepted by many researchers at home and abroad,but had a limitation in species identification and population division,so we should use the hard structures to analyze the morphological variation,consider the implication of environmental change with the morphology of organism,and try to print out the original appearance in 3D and describe the shape variation with theoretical studies.

Key words:geometric morphometrics,shape,aquatic animals,hard structure,environmental change

ReleaseDate:2015-04-19 11:27:18



[1] Bookstein F L.Size and shape spaces for landmark data in two dimensions[J].Statistical Science,1986,1(2):181-222.

[2] Bookstein F L.Morphometric tools for landmark data:geometry and biology[M].Cambridge University Press,Cambridge,1991.

[3] Rohlf F J.Relationships among eigenshape analysis,Fourier analysis,and analysis of coordinates[J].Mathematical Geology,1986,18(8):845-854.

[4] Rohlf F J.Extensions of the Procrustes method for the optimal superimposition of landmarks[J].Systematic Biology,1990,39(1):40-59.

[5] 杨奇森,夏霖,马勇,等.兽类头骨测量标准Ⅰ:基本量度[J].动物学杂志,2005,40(3):50-56.

[6] 沈佐锐,于新文.昆虫数学形态学研究及其应用展望[J].昆虫学报,1998,41(增刊):140-148.

[7] 潘鹏亮,沈佐锐,杨红珍,等.三种绢蝶翅脉数字化特征的提取及初步分析[J].动物分类学报,2008,33(3):566-571.

[8] 刘哲.生物医学图像的几何形态测量研究[D].北京:中国协和医科大学,2010.

[9] 邢松,周蜜,刘武.中国人牙齿形态测量分析-近代人群上下颌前臼齿齿冠轮廓形状及其变异[J].人类学学报,2010,29(2):132-149.

[10] Ledevin R,Quéré J P,Renaud S.Morphometrics as an insight into processes beyond tooth shape variation in a bank vole population[J].PloS One,2010,5(11):e15470.

[11] Ball R,Shu C,Xi P,et al.A comparison between Chinese and Caucasian head shapes[J].Applied Ergonomics,2010,41(6):832-839.

[12] Farias I,Vieira A R,Gordo L E,et al.Otolith shape analysis as a tool for stock discrimination of the black scabbardfish,Aphanopus carbo Lowe,1839(Pisces:Trichiuridae),in Portuguese waters[J].Scientia Marina,2009,73(s2):47-53.

[13] Ibaez A L,Cowx I G,O’Higgins P.Geometric morphometric analysis of fish scales for identifying genera,species,and local populations within the Mugilidae[J].Canadian Journal of Fisheries and Aquatic Sciences,2007,64(8):1091-1100.

[14] Raup D M.Geometric analysis of shell coiling:general problems[J].Journal of Paleontology,1966,40(5):1178-1190.

[15] 苏锦祥.鱼类学与海水鱼类养殖[M].北京:中国农业出版社,2010:1-13.

[16] Rohlf F J.On applications of geometric morphometrics to studies of ontogeny and phylogeny[J].Systematic Biology,1998,47(1):147-158.

[17] 萧旭峰,吴文哲.生物形状的科学浅谈几何形态测量学之发展与应用[J].科学月刊,1998(8):344.

[18] 白明,杨星科.几何形态测量法在生物形态学研究中的应用[J].昆虫知识,2007,44(1):143-147.

[19] Bookstein F L.A hundred years of morphometrics[J].Acta Zoologica Academiae Scientiarum Hungaricae,1998,44(1-2):7-59.

[20] Pearson K.Note on regression and inheritance in the case of two parents[J].Proceedings of the Royal Society of London,1895,58:240-242.

[21] Fisher R A.The logic of inductive inference[J].Journal of the Royal Statistical Society,1935,98:39-82.

[22] Hotelling H.Analysis of a complex of statistical variables into principal components[J].Journal of Educational Psychology,1933,24:417-441.

[23] Kendall D G.Shape-manifolds,procrustean metrics and complex projective spaces[J].Bulletin of the London Mathematical Society,1984,16(2):81-121.

[24] Bookstein F L.Biometrics,biomathematics and the morphometric synthesis[J].Bulletin of Mathematical Biology,1996,58(2):313-365.

[25] Rohlf F J,Marcus L F.A revolution in morphometrics[J].Trends in Ecology and Evolution,1993,8(4):129-132.

[26] Rohlf F J,Brookstein F L.Proceedings of the michigan morphometrics workshop[M].University of Michigan Museum of Zoology Special Publication,1990:1-380.

[27] Castonguay M,Simard P,Gagnon P.Usefulness of Fourier analysis of otolith shape for Atlantic mackerel(Scomber scombrus)stock discrimination[J].Canadian Journal of Fisheries and Aquatic Sciences,1991,48(2):296-302.

[28] Parisi-Baradad V,Lombarte A,García-Ladona E,et al.Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation[J].Marine and Freshwater Research,2005,56(5):795-804.

[29] Lombarte A,Chic ,Parisi-Baradad V,et al.A web-based environment for shape analysis of fish otoliths.The AFORO database[J].Scientia Marina,2006,70(1):147-152.

[30] Zelditch M L,Swiderski D L,Sheets H D.Geometric morphometrics for biologists:a primer[M].Academic Press,2012:25-306.

[31] Slice D E.Landmark coordinates aligned by Procrustes analysis do not lie in Kendall’s shape space[J].Systematic Biology,2001,50(1):141-149.

[32] Bookstein F L.Principal warps:Thin-plate splines and the decomposition of deformations[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,1989,11(6):567-585.

[33] Bernal V.Size and shape analysis of human molars:comparing traditional and geometric morphometric techniques[J].HOMO-Journal of Comparative Human Biology,2007,58(4):279-296.

[34] Parsons K J,Robinson B W,Hrbek T.Getting into shape:an empirical comparison of traditional truss-based morphometric methods with a newer geometric method applied to New World cichlids[J].Environmental Biology of Fishes,2003,67(4):417-431.

[35] Rohlf F J.Relative warp analysis and an example of its application to mosquito[J].Contributions to Morphometrics,1993,8:131.

[36] Rüber L,Adams D C.Evolutionary convergence of body shape and trophic morphology in cichlids from Lake Tanganyika[J].Journal of Evolutionary Biology,2001,14(2):325-332.

[37] Klingenberg C P.MorphoJ:an integrated software package for geometric morphometrics[J].Molecular Ecology Resources,2011,11(2):353-357.

[38] Hammer ,Harper D A T,Ryan P D.PAST:paleontological statistics software package for education and data analysis[J].Palaeontologia Electronica,2001,4(1):9.

[39] Rohlf F J.Morphometrics at SUNY Stony Brook[EB/OL].http:∥ life.bio.sunysb.edu/morph,2013-05-16.

[40] Sheets H D.Morphometrics Software:IMP-Integrated Morphometrics Package[EB/OL].http:∥www3.canisius.edu/~sheets/morphsoft.html.2013-05-16.

[41] Iwata H,Ukai Y.SHAPE:a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors[J].Journal of Heredity,2002,93(5):384-385.

[42] Claude J.Morphometrics with R[M].Springer,2008:10-270.

[43] Gevirtz J L.Fourier analysis of bivalve outlines:implications on evolution and autecology[J].Journal of the International Association for Mathematical Geology,1976,8(2):151-163.

[44] Wada K.Biogeographicpatterns in waving display,and body size and proportions of Macrophthalmus japonicus species complex(Crustacea:Brachyura:Ocypodidae)(taxonomy and systematics)[J].Zoological Science,1991,8(1):135-146.

[45] Cadrin S X.Discrimination of American lobster(Homarus americanus)stocks off southern New England on the basis of secondary sex character allometry[J].Canadian Journal of Fisheries and Aquatic Sciences,1995,52(12):2712-2723.

[46] Zimmermann G,Bosc P,Valade P,et al.Geometric morphometrics of carapace of Macrobrachium australe(Crustacea:Palaemonidae)from Reunion Island[J].Acta Zoologica,2012,93(4):492-500.

[47] Idaszkin Y L,Márquez F,Nocera A C.Habitat-specific shape variation in the carapace of the crab Cyrtograpsus angulatus[J].Journal of Zoology,2013,290(2):117-126.

[48] Ackerly S C.Kinematics of accretionary shell growth,with examples from brachiopods and molluscs[J].Paleobiology,1989,15(2):147-164.

[49] Brusca R C,Brusca G J.Chapter twenty:Phylum Mollusca.Invertebrates,2nd edition[M].Sinauer Associates,2003:302-405.

[50] Guralnick R,Kurpius J.Spatial and temporal growth patterns in the phenotypically variable Littorina saxatilis:surprising patterns emerge from chaos[M].Beyond Heterochrony,2001:195-228.

[51] Hollander J,Collyer M L,Adams D C,et al.Phenotypic plasticity in two marine snails:constraints superseding life history[J].Journal of Evolutionary Biology,2006,19(6):1861-1872.

[52] Teso V,Signorelli J H,Pastorino G.Shell phenotypic variation in the south-western Atlantic gastropod Olivancillaria carcellesi(Mollusca:Olividae)[J].Journal of the Marine Biological Association of the United Kingdom,2011,91(5):1089-1094.

[53] Cruz R A L,Pante M A J R,Rohlf F J.Geometric morphometric analysis of shell shape variation in Conus(Gastropoda:Conidae)[J].Zoological Journal of the Linnean Society,2012,165(2):296-310.

[54] Dommergues J L,Neige P,Boletzky S V.Exploration of morphospace using Procrustes analysis in statoliths of cuttlefish and squid(Cephalopoda:Decabrachia)-evolutionary aspects of form disparity[J].Veliger-berkeley,2000,43(3):265-276.

[55] Neige P,Dommergues J L.Disparity of beaks and statoliths of some coleoids a morphometric approach to depict shape differentiation[J].Gabhandlungen der Geologischen Bundesanstalt,2002,57(1):393-399.

[56] Lombarte A,Rufino M M,Sánchez P.Statolith identification of Mediterranean Octopodidae,Sepiidae,Loliginidae,Ommastrephidae and Enoploteuthidae based on warp analyses[J].Journal of the Marine Biological Association of the United Kingdom,2006,86(4):767-771.

[57] Crespi-Abril A C,Morsan E M,Barón P J.Analysis of the ontogenetic variation in body and beak shape of the Illex argentinus inner shelf spawning groups by geometric morphometrics[J].Journal of the Marine Biological Association of the United Kingdom,2010,90(3):547-553.

[58] Loy A,Cataudella S,Corti M.Shape changes during the growth of the sea bass,Dicentrarchus labrax(Teleostea:Perciformes),in relation to different rearing conditions[C]∥ Marcus L F,Corti M,Loy A.et al,eds.Advances in Morphometrics.NATO ASI Series A:Life Sciences,1996,284:399-414.

[59] Loy A,Mariani L,Bertelletti M,et al.Visualizing allometry:Geometric morphometrics in the study of shape changes in the early stages of the two‐banded sea bream,Diplodus vulgaris(Perciformes,Sparidae)[J].Journal of Morphology,1998,237(2):137-146.

[60] Reis R E,Zelditch M L,Fink W L.Ontogenetic allometry of body shape in the Neotropical catfish Callichthys(Teleostei:Siluriformes)[J].Copeia,1998(1):177-182.

[61] Corti M,Crosetti D.Geographic variation in the grey mullet Mugil cephalus(Pices:Mugilidae):a geometric morphometric analysis using partial warp scores[J].Journal of Fishery Biology,1996,48(2):255-269.

[62] Walker J A.Ecological morphology of lacustrine three spine stickleback Gasterosteus aculeatus L.(Gasterosteidae)body shape[J].Biological Journal of the Linnean Society,1997,61(1):3-50.

[63] Loy A,Busilacchi S,Costa C,et al.Comparing geometric morphometrics and outline fitting methods to monitor fish shape variability of Diplodus puntazzo(Teleostea:Sparidae)[J].Aquacultural Engineering,2000,21(4):271-283.

[64] Trapani J.Geometric morphometric analysis of body-form variability in Cichlasoma minckleyi,the Cuatro Cienegas cichlid[J].Environmental Biology of Fishes,2003,68(4):357-369.

[65] Rodríguez-Mendoza R,Muoz M,Saborido-Rey F.Ontogenetic allometry of the bluemouth,Helicolenus dactylopterus(Teleostei:Scorpaenidae),in the Northeast Atlantic and Mediterranean based on geometric morphometrics[J].Hydrobiologia,2011,670(1):5-22.

[66] Cadrin S X.Advances in morphometric identification of fishery stocks[J].Reviews in Fish Biology and Fisheries,2000,10(1):91-112.

[67] Silva A.Morphometric variation among sardine(Sardina pilchardus)populations from the northeastern Atlantic and the western Mediterranean[J].ICES Journal of Marine Science,2003,60(6):1352-1360.

[68] Verhaegen Y,Adriaens D,Wolf T D,et al.Deformities in larval gilthead sea bream(Sparus aurata):a qualitative and quantitative analysis using geometric morphometrics[J].Aquaculture,2007,268(1):156-168.

[69] Maderbacher M,Bauer C,Herler J,et al.Assessment of traditional versus geometric morphometrics for discriminating populations of the Tropheus moorii species complex(Teleostei:Cichlidae),a Lake Tanganyika model for allopatric speciation[J].Journal of Zoological Systematics and Evolutionary Research,2008,46(2):153-161.

[70] Addis P,Melis P,Cannas R,et al.A morphometric approach for the analysis of body shape in bluefin tuna:preliminary results[J].Collect Vol Sci Pap ICCAT,2010,65(3):982-987.

[71] Zischke M T,Griffiths S P,Tibbetts I R,et al.Stock identification of wahoo(Acanthocybium solandri)in the Pacific and Indian Oceans using morphometrics and parasites[J].ICES Journal of Marine Science,2013,70(1):164-172.

[72] Frédérich B,Vandewalle P.Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny:an example from damselfishes(Pomacentridae)[J].BMCEvolutionary Biology,2011,11(1):82.

[73] Frederich B,Adriaens D,Vandewalle P.Ontogenetic shape changes in Pomacentridae(Teleostei,Perciformes)and their relationships with feeding strategies:a geometric morphometric approach[J].Biological Journal of the Linnean Society,2008,95(1):92-105.

[74] Reig-Bolao R,Marti-Puig P,Rodriguez S,et al.Otoliths identifiers using image contours EFD[M]∥Distributed Computing and Artificial Intelligence.Springer Berlin Heidelberg,2010:9-16.

[75] Campana S E,Casselman J M.Stock discrimination using otolith shape analysis[J].Canadian Journal of Fisheries and Aquatic Sciences,1993,50(5):1062-1083.

[76] Cadrin S X,Friedland K D.The utility of image processing techniques for morphometric analysis and stock identification[J].Fisheries Research,1999,43(1):129-139.

[77] Piera J,Parisi-Baradad V,García-Ladona E,et al.Otolith shape feature extraction oriented to automatic classification with open distributed data[J].Marine and Freshwater Research,2005,56(5):805-814.

[78] Tracey S R,Lyle J M,Duhamel G.Application of ellipticalFourier analysis of otolith form as a tool for stock identification[J].Fisheries Research,2006,77(2):138-147.

[79] Agüera A,Brophy D.Use of saggital otolith shape analysis to discriminate Northeast Atlantic and Western Mediterranean stocks of Atlantic saury,Scomberesox saurus saurus(Walbaum)[J].Fisheries Research,2011,110(3):465-471.

[80] Lombarte A,Cruz A.Otolith size trends in marine fish communities from different depth strata[J].Journal of Fish Biology,2007,71(1):53-76.

[81] Capoccioni F,Costa C,Aguzzi J,et al.Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel(Anguilla anguilla)local stocks[J].Journal of Experimental Marine Biology and Ecology,2011,397(1):1-7.

[82] Vignon M.Ontogenetic trajectories of otolith shape during shift in habitat use:Interaction between otolith growth and environment[J].Journal of Experimental Marine Biology and Ecology,2012,420(1):26-32.

[83] 冯波,程罗妹.几何形态学方法区分短吻鲾地方种群的研究[J].上海海洋大学学报,2011,20(5):677-681.

[84] 张国华,但胜国,苗志国,等.六种鲤科鱼类耳石形态以及在种类和群体识别中的应用[J].水生生物学报,1999,23(6):683-686.

[85] 曾祥波,张国华.基于傅立叶耳石形态分析法对几种家鱼仔稚鱼的种类判别分析[J].中国水产科学,2012,19(6):970-977

[86] 张晓霞.耳石形态对凤鲚、湖鲚和刀鲚识别的初步研究[D].青岛:中国海洋大学,2010.

[87] 林文清.北部湾口四种中上层鱼类耳石形态学、分布、生物学及资源评估[D].湛江:广东海洋大学,2011.

[88] 叶振江.中国海洋鱼类耳石形态学分析及应用研究[D].湛江:中国海洋大学,2010.

[89] 王英俊.傅里叶分析在鱼类耳石形态学中的应用研究[D].湛江:中国海洋大学,2010.

[90] 郭弘艺,唐文乔,魏凯,等.中国鲚属鱼类的矢耳石形态特征[J].动物学杂志,2007,42(1):39-47.

[91] 郭弘艺,魏凯,唐文乔,等.基于矢耳石形态特征的中国鲚属鱼类种类识别[J].动物分类学报,2010,35(1):127-134.

[92] 窦硕增,于鑫,曹亮.鱼类矢耳石形态分析及其在群体识别中的应用实例研究[J].海洋与湖沼,2012,43(4):702-712.

[93] 姜涛,杨健,刘洪波,等.刀鲚、凤鲚和湖鲚矢耳石的形态学比较研究[J].海洋科学,2011(3):23-31.

[94] 李辉华,郭弘艺,唐文乔,等.两种耳石分析法在鲚属种间和种群间识别效果的比较研究[J].淡水渔业,2013,43(1):14-18.

[95] Zelditch M L,Fink W L,Swiderski D L,et al.On applications of geometric morphometrics to studies of ontogeny and phylogeny:a reply to Rohlf[J].Systematic Biology,1998,47(1):159-167.

[96] Smith U E,Hendricks J R.Geometric morphometric character suites as phylogenetic data:extracting phylogenetic signal from Gastropod shells[J].Systematic Biology,2013.DOI:10.1093/sysbio/syt002

[97] Bo W,Wang Z,Xu F,et al.Shape mapping:genetic mapping meets geometric morphometrics[J].Briefings in Bioinformatics,2013.DOI:10.1093/bib/bbt008

[98] Ferguson G J,Ward T M,Gillanders B M.Otolith shape and elemental composition:complementary tools for stock discrimination of mulloway(Argyrosomus japonicus)in southern Australia[J].Fisheries Research,2011,110(1):75-83.

[99] Cruz A,Lombarte A.Otolith size and its relationship with colour patterns and sound production[J].Journal of Fish Biology,2004,65(6):1512-1525.

[100] Reig-Bolao R,Marti-Puig P,Lombarte A,et al.A new otolith image contour descriptor based on partial reflection[J].EnvironmentalBiology of Fishes,2010,89(3-4):579-590.

[101] Nasreddine K,Benzinou A,Fablet R.Shape geodesics for the classification of calcified structures:beyond Fourier shape descriptors[J].Fisheries Research,2009,98(1):8-15.

[102] Vorndran E,Klarner M,Klammert U,et al.3D powder printing of β-tricalcium phosphate ceramics using different strategies[J].Advanced Engineering Materials,2008,10(12):B67-B71.

[103] Kain A,Mueller C,Reinecke H.High aspect ratio-and 3D-printing of freestanding sophisticated structures[J].Procedia Chemistry,2009,1(1):750-753.

[104] Mitteroecker P,Gunz P.Advances in geometric morphometrics[J].Evolutionary Biology,2009,36(2):235-247.

[105] Richtsmeier J T,Burke Deleon V,Lele S R.The promise of geometric morphometrics[J].American Journal of Physical Anthropology,2002,119(S35):63-91.

[106] Lawing A M,Polly P D.Geometric morphometrics:recent applications to the study of evolution and development[J].Journal of Zoology,2010,280(1):1-7.

[107] O’Higgins P,Milne N.Applying geometric morphometrics to compare changes in size and shape arising from finite elements analyses[J].Hystrix,the Italian Journal of Mammalogy,2013,24(1):1-7.