doi:

DOI: 10.3724/SP.J.1118.2019.18161

Journal of Fishery Sciences of China (中国水产科学) 2019/26:3 PP.484-492

Effect of three forms of manganese on growth performance, antioxidant capacity, and intestinal morphology of juvenile hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatu♂)


Abstract:
This study was conducted to determine the effects of three forms of manganese on growth performance, antioxidant capacity, serum biochemical indexes, and intestinal morphology of juvenile hybrid grouper (Epinephelus fuscoguttatus×E. lanceolatu♂). The experimental diets were isonitrogenous and isolipidic diets with the addition of manganese sulfate (MnSO4), manganese glycine (Mn-Gly), and manganese hydroxymethionine (Mn-MHA), respectively. The three groups containing manganese had 37.74 mg/kg, 40.66 mg/kg, and 38.15 mg/kg, respectively. Two hundred and seventy groupers[initial average weight (11.00±0.12) g] were randomly divided into three groups with three replicates at a stock density of 30, and fed with test diets for 8 weeks. The results showed that the weight gain rate in Mn-Gly and Mn-MHA groups were significantly higher than that of the MnSO4group. The feed coefficient rate of fish fed Mn-MHA were significantly lower than those fed MnSO4. The specific growth rate and survival rate were not significantly different among the three groups (P > 0.05). Liver malo­­naldehyde contents in the Mn-Gly and Mn-MHA groups were significantly lower than those in the MnSO4group. In the Mn-MHA group, the activity of manganese superoxide dismutase in the liver was significantly higher than that in the MnSO4 and Mn-Gly groups. The activity of copper-zinc superoxide dismutase in the Mn-Gly and Mn-MHA groups were significantly lower than those fed in the MnSO4group (P < 0.05). In serum, the contents of glucose in the Mn-Gly and Mn-MHA groups were significantly higher than that of the MnSO4group, the contents of cholesterol in the MnSO4 and Mn-Gly groups were significantly higher than that of the Mn-MHA group (P < 0.05). Compared to the MnSO4group, the plica height of proximal and mid intestine, and the muscle thickness of distal intestine were significantly increased in the Mn-MHA group (P < 0.05). In the Mn-Gly group, the plica width of mid intestine was significantly increased comparing to that of MnSO4group, the plica height of distal intestine was significantly higher than that of the MnSO4 and Mn-MHA groups (P < 0.05). In conclusion, compared with MnSO4, Mn-Gly and Mn-MHA could significantly improve the growth performance, enhance the antioxidant capacity of liver, regulate the related metabolic response, protect the liver, and promote the development of the proximal, mid, and distal intestines of juvenile hybrid grouper.

Key words:manganese sources; Epinephelus fuscoguttatus♀×E. lanceolatu♂; growth performance; antioxidant capacity; serum biochemical indexes; intestine

ReleaseDate:2019-07-04 08:50:30



[1] Andreini C, Bertini I, Cavallaro G, et al. Metal ions in biological catalysis:from enzyme databases to general principles[J]. Journal of Biological Inorganic Chemistry, 2008, 13(8):1205-1218.

[2] Zhang H L, Sun R J, Xu W, et al. Dietary manganese requirement of juvenile large yellow croaker Larimichthys crocea (Richardson, 1846)[J]. Aquaculture, 2016, 450:74-79.

[3] Gerber G B, Lonard A, Hantson P. Carcinogenicity, mutagenicity and teratogenicity of manganese compounds[J]. Critical Reviews in Oncology Hematology, 2002, 42(1):25-34.

[4] Tan X Y, Xie P, Luo Z, et al. Dietary manganese requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on whole body mineral composition and hepatic intermediary metabolism[J]. Aquaculture, 2012, 326-329:68-73.

[5] Lin Y H, Lin S M, Shiau S Y. Dietary manganese requirements of juvenile tilapia, Oreochromis niloticus×O. aureus[J]. Aquaculture, 2008, 284(1-4):207-210.

[6] Liang J J, Wang S, Han B, et al. Dietary manganese requirement of juvenile grass carp (Ctenopharyngodon idella Val.) based on growth and tissue manganese concentration[J]. Aquaculture Research, 2015, 46(12):2991-2998.

[7] Liu K. Studies on nutritional physiology of selenium and manganese for cobia (Rachycentron canadum)[D]. Qingdao:Ocean University of China, 2010.[刘康. 军曹鱼幼鱼(Rachycentron canadum)微量元素硒、锰的营养生理研究[D]. 青岛:中国海洋大学, 2010.]

[8] Additives E P O. Safety and efficacy of manganese hydroxychloride as feed additive for all animal species[J]. EFSA Journal, 2016, 14(5):e04474.

[9] Liu Y, Wang J Y, Li B S, et al. Dietary manganese requirement of juvenile hybrid grouper, Epinephelus lanceolatus×E. fuscoguttatus[J]. Aquaculture Nutrition, 2018, 24(1):215-223.

[10] Satoh S, Apines M J, Tsukioka T, et al. Bioavailability of amino acid-chelated and glass-embedded manganese to rainbow trout, Oncorhynchus mykiss (Walbaum), fingerlings[J]. Aquaculture Research, 2015, 32(s1):18-25.

[11] Yang B, Cai H Y, Liu G H, et al. Evaluation of relative bioavailability of amino acid chelate manganese with slope ratio method for broilers[J]. Chinese Journal of Animal Nutrition, 2014, 26(8):2110-2117.[杨斌, 蔡辉益, 刘国华, 等. 斜率比法评定肉仔鸡对氨基酸螯合锰的相对生物学利用率[J]. 动物营养学报, 2014, 26(8):2110-2117.]

[12] Jiang S T, Wu X Y, Luo Y, et al. Optimal dietary protein level and protein to energy ratio for hybrid grouper (Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂) juveniles[J]. Aquaculture, 2016, 465:28-36.

[13] Wang M H, Wang J Y, Song Z D, et al. Effects of dietary conjugated linoleic acid on growth, body composition and metabolism-related hepatic enzyme activities in juvenile hybrid grouper (Epinephelus fuscoguttatus ♀×E. lanceolatu ♂)[J]. Journal of Fishery Sciences of China, 2016, 23(6):1300-1310.[王明辉, 王际英, 宋志东, 等. 共轭亚油酸对珍珠龙胆石斑鱼幼鱼生长、体组成及肝代谢相关酶活力的影响[J]. 中国水产科学, 2016, 23(6):1300-1310.]

[14] Gong Y, Hu X B, Peng L X, et al. Antibacterial activities of four zinc-amino acid chelates[J]. Food Science, 2009, 30(17):84-87.[龚毅, 胡晓波, 彭丽霞, 等. 锌氨基酸螯合物的抑菌活性研究[J]. 食品科学, 2009, 30(17):84-87.]

[15] Li S F, Luo X G, Lu L, et al. Bioavailability of organic manganese sources in broilers fed high dietary calcium[J]. Animal Feed Science and Technology, 2005, 123-124(Pt2):703-715.

[16] Liu Y. Studies on the cobalt and manganese requirements in juvenile pearl gentian grouper (♀ Epinephelus fuscoguttatus×♂ Epinephelus lanceolatus)[D]. Shanghai:Shanghai Ocean University, 2016.[刘云. 珍珠龙胆石斑鱼幼鱼对钴和锰营养需求的研究[D]. 上海:上海海洋大学, 2016.]

[17] Nie J Q, Dong X H, Tan B P, et al. Effects of dietary manganese sources and levels on growth performance, relative manganese bioavailability, antioxidant activities and tissue mineral content of juvenile cobia (Rachycentron canadum L)[J]. Aquaculture Research, 2016, 47(5):1402-1412.

[18] Chi S Y, Tan B P, Dong X H, et al. Effects of supplemental coated or crystalline methionine in low-fishmeal diet on the growth performance and body composition of juvenile cobia Rachycentron canadum (Linnaeus)[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(6):1297-1306.

[19] Ma R, Hou H, Mai K, et al. Comparative study on the effects of chelated or inorganic manganese in diets containing tricalcium phosphate and phytate on the growth performance and physiological responses of turbot Scophthalmus maximus[J]. Aquaculture Nutrition, 2015, 21(6):780-787.

[20] Hou H P. Comparative study on nutritional physiology of dietary methionine sources and manganese sources for turbot (Scophthalmus maximus L.)[D]. Qingdao:Ocean University of China, 2012.[候华鹏. 大菱鲆(Scophthalmus maximus L.)对不同形式的蛋氨酸源和锰源的营养生理研究[D]. 青岛:中国海洋大学, 2012.]

[21] Ahmed M, Abdullah N, Yusof H M, et al. Improvement of growth and antioxidant status in nile tilapia, Oreochromis niloticus, fed diets supplemented with mushroom stalk waste hot water extract[J]. Aquaculture Research, 2017, 48(3):1146-1157.

[22] Wang Y H, Wang Y Y, Mai K S, et al. Effects of dietary curcumin on growth performance, body composition and serum antioxidant enzyme activity in juvenile turbot (Scophthalmus maximus)[J]. Journal of Fisheries of China, 2016, 40(9):1299-1308.[王雅慧, 王裕玉, 麦康森, 等. 饲料中添加姜黄素对大菱鲆幼鱼生长、体组成及抗氧化酶活力的影响[J]. 水产学报, 2016, 40(9):1299-1308.]

[23] Ferreira D, Rocha H C, Kreutz L C, et al. Bee products prevent agrichemical-induced oxidative damage in fish[J]. PLoS ONE, 2013, 8(10):e74499.

[24] Liu K, Ai Q H, Mai K S, et al. Dietary manganese requirement for juvenile cobia, Rachycentron canadum L[J]. Aquaculture Nutrition, 2013, 19(4):461-467.

[25] Tan X Y, Xie P, Luo Z, et al. Dietary manganese requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on whole body mineral composition and hepatic intermediary metabolism[J]. Aquaculture, 2012, 326-329:68-73.

[26] Ye C X, Liu Y J, Tian L X, et al. Effect of dietary zinc on growth, feed efficiency, mineral content and body composition of juvenile grouper Epinephelus coioides[J]. Oceanologia et Limnologia Sinica, 2013, 44(1):83-89.[叶超霞, 刘永坚, 田丽霞, 等. 饲料中锌含量对斜带石斑鱼(Epinephelus coioides)生长、饲料效率、矿物质含量和体组成的影响[J]. 海洋与湖沼, 2013, 44(1):83-89.]

[27] Bai L R, Zhao Z Y. Effects of copper and manganese on hemocyte apoptosis and antagonism of iron and zinc in Oreochromis niloticus[J]. Agricultural Science & Technology, 2016, 17(3):684-689.

[28] Xu M Z, Zhang Q, Tong T, et al. Effects of dietary manganese content on growth performance, body composition, coelomic fluid manganese-superoxide dismutase activity and tissue manganese content of juvenile peanut worm, Sipunculus nudus Linnaeus[J]. Chinese Journal of Animal Nutrition, 2015, 27(10):3077-3083.[许明珠, 张琴, 童潼, 等. 饲料中锰含量对方格星虫稚虫生长性能、体成分、体腔液中锰超氧化物歧化酶活性及组织锰含量的影响[J]. 动物营养学报, 2015, 27(10):3077-3083.]

[29] Araújo T G, Oliveira A G, Vecina J F, et al. Treatment with Parkinsonia aculeata combats insulin resistance-induced oxidative stress through the increase in PPARγ/CuZn-SOD axis expression in diet-induced obesity mice[J]. Molecular and Cellular Biochemistry, 2016, 419(1-2):93-101.

[30] Perera N C, Godahewa G I, Lee J. Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein[J]. Fish & Shellfish Immunology, 2016, 57:386-399.

[31] Ghosh K, De S, Das S, et al. Withaferin A induces ROS-mediated paraptosis in human breast cancer cell-lines MCF-7 and MDA-MB-231[J]. PLoS ONE, 2016, 11(12):e0168488.

[32] Andersen D E, Reid S D, Moon T W, et al. Metabolic Effects associated with chronically elevated cortisol in rainbow trout (Oncorhynchus mykiss)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48(9):1811-1817.

[33] Millán-Cubillo A F, Martos-Sitcha J A, Ruiz-Jarabo I, et al. Low stocking density negatively affects growth, metabolism and stress pathways in juvenile specimens of meagre (Argyrosomus regius, Asso 1801)[J]. Aquaculture, 2016, 451:87-92.

[34] Pan X Y, Zhang Q, Li J, et al. Dietary glycine improved the capacity of anti-oxidation and anti-stress of large yellow croaker (Larimichthys crocea)[J]. Progress in Fishery Sciences, 2017, 38(2):91-98.[潘孝毅, 张琴, 李俊, 等. 饲料中添加甘氨酸可提高大黄鱼(Larimichthys crocea)的抗氧化和抗应激能力[J]. 渔业科学进展, 2017, 38(2):91-98.]

[35] Deng D F, Refstie S and Sso H. Glycemic and glycosuric responses in white sturgeon (Acipenser transmontanus) after oral administration of simple and complex carbohydrates[J]. Aquaculture, 2001, 199(1-2):107-117.

[36] Xiang X, Zhou X H, Chen J, et al. Effects of dietary lipid level on growth performance,body composition and serum biochemical indices of juvenile Onychostoma sima[J]. Chinese Journal of Animal Nutrition, 2013, 25(8):1805-1816.[向枭, 周兴华, 陈建, 等. 饲料脂肪水平对白甲鱼幼鱼生长性能、体组成和血清生化指标的影响[J]. 动物营养学报, 2013, 25(8):1805-1816.]

[37] Zhu T T, Li Q, Zhu H Y, et al. Effects of dietary lipid level on growth performance, blood biochemical index and antioxidant status of juvenile Acipenser gueldenstaedtii[J]. Marine Fisheries, 2017, 39(1):58-67.[朱婷婷, 李琦, 朱浩拥, 等. 饲料脂肪水平对俄罗斯鲟幼鱼生长、血液生化指标及抗氧化性能的影响[J]. 海洋渔业, 2017, 39(1):58-67.]

[38] Song J, Jiang H B, Jiang Z Q, et al. Effects of dietary carbohydrate sources on growth, feed utilization and haematological parameters of juvenile hybrid sturgeon Acipenser baeri ♀×A. schrenckii ♂[J]. Journal of Dalian Ocean University, 2016, 31(1):58-64.[宋娇, 姜海波, 姜志强, 等. 饲料中不同糖源对杂交鲟幼鱼生长性能、血清生化指标和肌肉营养成分的影响[J]. 大连海洋大学学报, 2016, 31(1):58-64.]

[39] El Ashry G M, Hassan A A M, Soliman S M. Effect of feeding a combination of zinc, manganese and copper methionine chelates of early lactation high producing dairy cow[J]. Food and Nutrition Sciences, 2012, 3(8):1084-1091.

[40] Liu Y, Wang J Y, Li B S, et al. Dietary manganese requirement of juvenile hybrid grouper, Epinephelus lanceolatus×E. fuscoguttatus[J]. Aquaculture Nutrition, 2018, 24(1):215-223.

[41] Zhao J. The application study on complex amino acid chelated iron, copper, manganese, zinc in broiler production[D]. Yaan:Sichuan Agricultural University, 2003.[赵军. 复合氨基酸螯合铁、铜、锰、锌在肉鸡生产中的应用研究[D]. 雅安:四川农业大学, 2003.

[42] Wang F. Effects of phytase on apparent digestibility of nutrient and digestive enzyme activities of rainbow trout (Oncorhynchus mykiss Walbaum)[D]. Harbin:Northeast Agricultural University, 2008.[王枫. 植酸酶对金鳟营养物质表观消化率与消化酶活性的影响[D]. 哈尔滨:东北农业大学, 2008.]

[43] Wang W W. Important roles for glycine in piglet growth and intestinal function[D]. Beijing:China Agricultural University, 2014.[王薇薇. 甘氨酸对仔猪生长及肠道功能影响的研究[D]. 北京:中国农业大学, 2014.]

[44] Ma X, Ma Q G, Ji C, et al. Inhibition efficacy of HMTBA against major enteric pathogens compared with other organic acids in virto[J]. Chinese Journal of Animal Nutrition, 2008, 20(2):238-241.[马鑫, 马秋刚, 计成, 等. 蛋氨酸羟基类似物和有机酸化剂对主要肠道病原菌体外抑菌效果的比较[J]. 动物营养学报, 2008, 20(2):238-241.]

[45] Zhao Y. Effects of methionine hydroxy analogue on intestinal redox status and bone development of broilers[D]. Wuxi:Jiangnan University, 2013.[赵琰. 蛋氨酸羟基类似物对肉鸡肠道氧化还原状态和骨骼发育的影响[D]. 无锡:江南大学, 2013.]

[46] Huang Y Z, Lin X, Wang Q X, et al. Effects of astragalus polysaccharide on structure of intestinal villus and intestinal immunocyte of tilapia[J]. Chinese Journal of Animal Nutrition, 2010, 22(1):108-116.[黄玉章, 林旋, 王全溪, 等. 黄芪多糖对罗非鱼肠绒毛形态结构及肠道免疫细胞的影响[J]. 动物营养学报, 2010, 22(1):108-116.]