DOI: 10.3724/SP.J.1118.2019.18329

Journal of Fishery Sciences of China (中国水产科学) 2019/26:3 PP.512-521

Evaluating the growth parameters of Pholis fangi based on the bootstrap-ELEFAN method

Fish stock assessment usually requires a wide range of supporting data, including an abundance index, production, age structure. However, some data are hardly available in many fisheries because of limited research funding and social attention. Therefore, many fisheries, particularly small-scale fisheries, often do not have sufficient data to support fish stock assessment and are considered data-limited or data-poor. An increasing amount of literature has been focused on the development of data-poor stock assessment methods in recent decades, among which electronic length frequency analysis (ELEFAN) is a prevalent method that uses length frequency distribution data to assess the status of fisheries. One crucial application of the ELEFAN is the estimation of growth parameters in the Von Bertalanffy growth function (VBGF). However, the method is based on certain optimization algorithms and cannot provide information on its precision or confidence intervals for growth parameters, which implies that the reliability of ELEFAN needs to be tested in future studies. This study used a bootstrap approach to evaluate the uncertainty of the ELEFAN method based on the survey data of Pholis fangi in Haizhou Bay. This species is one of the dominant species in Haizhou Bay and plays an important role in the food web and ecosystem of the Yellow Sea. Although the declines in fishery resources have drawn increasing attention in many regions of the world, relevant studies have commonly focused on large-scale fisheries, whereas small-scale fisheries, such as that of P. fangi, has been largely overlooked. Therefore, the biological characteristics of this species and their temporal changes is not well understood. This study was focused on the temporal changes in VBGF growth parameters of P. fangi in Haizhou Bay at different survey periods. We conducted annual bottom trawl surveys in Haizhou Bay in the spring and autumn from 2013 to 2018, and used the ELEFAN method to estimate the VBGF growth parameters infinite length (L) and growth parameter (K) of P. fangi. In addition, the bootstrapped ELEFAN was used to evaluate the variation in the growth parameters, and the difference was compared between 2013-2015 and 2016-2018. We analyzed the robustness of ELEFAN with respect to three aspects:(1) the effect of bin size of body length on parameter estimation, (2) the selection of different optimization algorithms (Simulated Annealing, SA; Genetic Algorithm, GA; Response Surface Analysis, RSA), and (3) the confidence intervals of parameter estimation through the bootstrap approach. The results showed that the VBGF growth parameters of P. fangi in Haizhou Bay changed significantly during 2013-2018, and the decreased infinite length (L) and increased growth parameter (K) indicated that there was a significant trend of miniaturization. The bin size of body length significantly affected the goodness of model fit and improper bin size settings might lead to unreasonable parameter estimations. Bootstrapped ELEFAN provided robust parameter estimations compared to the conventional ELEFAN approach, and the bootstrapped results were less affected by the randomness of sample data. The Genetic Algorithm could benefit from parallel computing in the TropfishR package, which significantly sped up computation. This study improved the understanding of population dynamics of P. fangi. In particular, the changes of growth characteristics of this species may have a substantial impact on the Haizhou Bay ecosystem. We demonstrated that bootstrapped ELEFAN performed well and could be applied to the prevalent data-poor and small-scale fisheries.

Key words:Pholis fangi; von-Bertalanffy growth parameter; ELEFAN; bootstrap

ReleaseDate:2019-07-04 08:50:31

[1] Wang Z F. Research on ecological recovery suitability assessment for Haizhou Bay special marine reserves[D]. Nanjing:Nanjing Normal University, 2011.[王在峰. 海州湾海洋特别保护区生态恢复适宜性评估[D]. 南京:南京师范大学, 2011.]

[2] Wang X L, Xu B D, Ji Y P, et al. Fish community structure and its relationships with environmental factors in Haizhou Bay and adjacent waters of East China in winter[J]. Chinese Journal of Applied Ecology, 2013, 24(6):1707-1714.[王小林, 徐宾铎, 纪毓鹏, 等. 海州湾及邻近海域冬季鱼类群落结构及其与环境因子的关系[J]. 应用生态学报, 2013,24(6):1707-1714.]

[3] Luan J, Xu B D, Xue Y, et al. Size distribution and length-weight relationships in Pholis fangi in Haizhou Bay[J]. Journal of Fishery Sciences of China, 2017, 24(6):1323-1331.[栾静, 徐宾铎, 薛莹, 等. 海州湾方氏云鳚体长与体重分布特征及其关系[J]. 中国水产科学, 2017, 24(6):1323-1331.]

[4] Li L. Study on morphology and genetics of Pholis fangi and P. nebulosa[D]. Qingdao:Ocean University of China, 2013.[李琳. 方氏云鳚和云鳚的形态学与遗传学研究[D]. 青岛:中国海洋大学, 2013.]

[5] Huang X X, Zeng X Q, Zhang C. The reproductive biology of Enedrias fangi in the inshore waters of Qingdao[J]. Periodical of Ocean University of China, 2010, 40(8):55-59.[黄晓璇, 曾晓起, 张驰. 青岛近海方氏云鳚繁殖生物学的初步研究[J]. 中国海洋大学学报(自然科学版), 2010, 40(8):55-59.]

[6] Li S Y. Feed habits of Enedrias fangi in Jiaozhou Bay based on stomach contents analysis and stable isotope analysis[D]. Qingdao:Ocean University of China, 2015.[李世岩. 基于稳定同位素和胃含物分析研究胶州湾方氏云鳚的摄食习性[D]. 青岛:中国海洋大学, 2015.]

[7] Li L, Song N, Gao T X. Analysis of Pholis fangi by control region sequence[C]//Society of Ichthyology of Chinese Society of Oceanology and Limnology, Society of Ichthyology of China Zoology Society. Summary Collection of Symposium Papers. 2012.[李琳, 宋娜, 高天翔. 方氏云鳚群体控制区序列分析[C]//中国海洋湖沼学会鱼类学分会, 中国动物学会鱼类学分会. 2012年学术研讨会论文摘要汇编. 2012.]

[8] Li M, Li Z G, Xu B D, et al. Effects of spatiotemporal and environmental factors on the distribution and abundance of Pholis fangi in Haizhou Bay using a generalized additive model[J]. Journal of Fishery Sciences of China, 2015, 22(4):812-819.[李敏, 李增光, 徐宾铎, 等. 时空和环境因子对海州湾方氏云鳚资源丰度分布的影响[J]. 中国水产科学, 2015, 22(4):812-819.]

[9] Pauly D, Christensen V, Froese R, et al. Fishing down aquatic food webs[J]. American Scientist, 2000, 88(1):46-51.

[10] Liu Q G, Shen J Z, Chen M K, et al. Advances of the study on the miniaturization of natural economical fish resources[J]. Journal of Shanghai Fisheries University, 2005, 14(1):79-83.[刘其根, 沈建忠, 陈马康,等. 天然经济鱼类小型化问题的研究进展[J]. 上海水产大学学报, 2005, 14(1):79-83.]

[11] Ye J Q, Xu Z L,Chen J J, et al. Resources status analysis of large yellow croaker in Guanjingyang using von Bertalanffy growth equation and fishing mortality parameters[J]. Journal of Fisheries of China, 2012, 36(2):238-246.[叶金清, 徐兆礼, 陈佳杰, 等. 基于生长和死亡参数变化的官井洋大黄鱼资源现状分析[J]. 水产学报, 2012, 36(2):238-246.]

[12] Guo X P, Jin X S, Dai F Q. Growth variation of small yellow croaker (Pseudosciaena polyactis Bleeker) in Bohai sea[J]. Journal of Fishery Sciences of China, 2006, 13(2):243-249.[郭旭鹏, 金显仕, 戴芳群. 渤海小黄鱼生长特征的变化[J]. 中国水产科学, 2006, 13(2):243-249.]

[13] Zhu J C, Zhao X Y, Li F G. Growth characters of the anchovy stock in the Yellow Sea with its annual and seasonal variations[J]. Marine Fisheries Research, 2007, 28(3):64-72.[朱建成, 赵宪勇, 李富国. 黄海鳀鱼的生长特征及其年际与季节变化[J]. 渔业科学进展, 2007, 28(3):64-72.]

[14] Pilling G M, Apostolaki P, Failler P, et al. Assessment and management of data-poor fisheries[M]//Advances in Fisheries. Blackwell Publishing, 2008, 12:37-42.

[15] Costello C, Ovando D, Hilborn R, et al. Status and solutions for the world's unassessed fisheries[J]. Science, 2012, 338(6106):517-520.

[16] Bentley N. Data and time poverty in fisheries estimation:potential approaches and solutions[J]. ICES Journal of Marine Science, 2015, 72(1):323-328.

[17] Xu B D, Zhang C L, Xue Y, et al. Optimization of sampling effort for a fishery-independent survey with multiple goals[J]. Environmental Monitoring and Assessment, 2015, 187:252.

[18] General Administration of Quality Supervision, Inspection and Quarantine. Specifications for oceanographic survey (Part 6):Marine biological survey (GB/T 12763.6-2007)[S]. Beijing:Standards Press of China, 2007.[国家质量监督检验检疫总局. GB/T 12763.6-2007海洋调查规范, 第6部分:海洋生物调查[S]. 北京:中国标准出版社, 2007.]

[19] Bertalanffy L V. A quantitative theory of organic growth (inquiries on growth laws. Ⅱ)[J]. Human Biology, 1938, 10(2):181-213.

[20] Pauly D, David N. ELEFAN I, a BASIC program for the objective extraction of growth parameters from length-frequency data[J]. Meeresforschung, 1981, 28:205-211.

[21] Bellido J M, Pierce G J, Romero J L, et al. Use of frequency analysis methods to estimate growth of anchovy (Engraulis encrasicolus L. 1758) in the Gulf of Cádiz (SW Spain)[J]. Fisheries Research, 2000, 48(2):107-115.

[22] Chen Z Z, Qiu Y S. Estimation of growth and mortality parameters of Parargyrops edita Tanaka in Beibu Bat[J]. Journal of Fisheries of China, 2003, 27(3):251-257.[陈作志, 邱永松. 北部湾二长棘鲷生长和死亡参数估计[J]. 水产学报, 2003, 27(3):251-257.]

[23] Chen G B, Qiu Y S. Growth, Mortality and Rational Utilization of Horse Mackerel in Nothern South China Sea[J]. Journal of Zhanjiang Ocean University, 2004, 24(1):35-40.[陈国宝, 邱永松. 南海北部竹筴鱼的生长、死亡及合理利用[J]. 广东海洋大学学报, 2004, 24(1):35-40.]

[24] Jaiswar A K, Chakraborty S K, Raja R, et al. Population dynamics of lizard fish Saurida tumbil (Teleostomi/Synodontidae) from Mumbai, west coast of India[J]. Indian Journal of Geo-Marine Sciences, 2003, 32(2):147-150.

[25] Taylor M H, Mildenberger T K. Extending electronic length frequency analysis in R[J]. Fisheries Management and Ecology, 2017, 24(4):330-338.

[26] Pauly D. A review of the ELEFAN system for analysis of length-frequency data in fish and aquatic invertebrates[C]//ICLARM Conference Proceedings 13, 1987:7-34.

[27] Hang X X. Study on the fishery biology of Enedrias fangi Wang et Wang in inshore waters of Qingdao[D]. Qingdao:Ocean University of China, 2010.[黄晓璇. 青岛近海方氏云鳚(Enedrias fangi Wang et Wang)渔业生物学初步研究[D]. 青岛:中国海洋大学, 2010.]

[28] Jiang Z Q, Qin K J. Age and growth of Enedrias fangi in Dalian[J]. Journal of Dalian Fisheries College, 1989, 5(1):33-41.[姜志强, 秦克静. 大连地区方氏云鳚的年龄和生长[J]. 大连水产学院学报, 1989, 5(1):33-41.]

[29] Hoggarth D D. Stock assessment for fishery management:A framework guide to the stock assessment tools of the Fisheries Management and Science Programme (FMSP)[M]. Food and Agriculture Organization, 2006.

[30] Johnson R W. Anintroduction to the bootstrap[J]. Teaching Statistics, 2010, 23(2):49-54.

[31] Bradley E, Tibshirani R J. Introduction to the Bootstrap[M]. New York and London:Chapman & Hall, 1993:49-54.

[32] Mildenberger T K, Taylor M H, Wolff M. TropFishR:an R package for fisheries analysis with length-frequency data[J]. Methods in Ecology and Evolution, 2017, 8(11):1520-1527

[33] Stokes K, Law R. Fishing as an evolutionary force[J]. Marine Ecology Progress Series, 2000, 208:307-309.

[34] Ernande B, Dieckmann U, Heino M. Adaptive changes in harvested populations:plasticity and evolution of age and size at maturation[J]. Proceedings of the Royal Society B:Biological Sciences, 2011, 271(1537):415-423.

[35] Liu X F. Study on feeding ecology and food relations of two high trophic level fishes in Haizhou Bay[D]. Qingdao:Ocean University of China, 2015.[刘西方. 海州湾两种高营养级鱼类摄食生态及其食物关系研究[D]. 青岛:中国海洋大学, 2015.]

[36] Smith A D M, Tam J. Impacts of fishing low-trophic level species on marine ecosystems[J]. Science, 2011, 333(6046):1147-1150.

[37] Chen G B, Li Y Z, Chen P M, et al. Optimum interval class size of length-frequency analysis of fish[J]. Journal of Fishery Sciences of China, 2008, 15(4):659-666.[陈国宝, 李永振, 陈丕茂, 等. 鱼类最佳体长频率分析组距研究[J]. 中国水产科学, 2008, 15(4):659-666.]

[38] Gayanilo F C Jr, Sparre P, Pauly D. FAO-ICLARM Stock Assessment Tools Ⅱ[M]. Computerized Information, 2005.

[39] Cantú-Paz E. Designing efficient and accurate parallel genetic algorithms (parallel algorithms)[M]. Kluwer Academic Publishers, 2001.

[40] Pitcher T J, Macdonald P D M. Two models for seasonal growth in fishes[J]. Journal of Applied Ecology, 1973, 10(2):599-606.

[41] Cloern J E, Nichols F H. A von Bertalanffy growth model with a seasonally varying coefficient[J]. Journal of the Fisheries Research Board of Canada, 1978, 35(11):1479-1482.

[42] Somers I F. On a seasonally oscillating growth function[J]. Fishbyte, 1988, 6:8-11.

[43] Zhan B Y. Fish Stock Assessment[M]. Beijing:Agriculture Press, 1995:25-31.[詹秉义. 渔业资源评估[M]. 北京:农业出版社, 1995:25-31.]