DOI: 10.3724/SP.J.1118.2019.18259

Journal of Fishery Sciences of China (中国水产科学) 2019/26:3 PP.436-444

Genetic diversity analysis of wild and cultured Eriocheir sinensis populations from the Yangtze River, Yellow River, and Liaohe River based on the mitochondrial D-loop gene

The Chinese mitten crab, Eriocheir sinensis, is one of the most important aquaculture species in China, and is widely distributed in Eastern Asia. This study was conducted to evaluate the genetic diversity and genetic structure of cultured and wild populations of E. sinensis from the Yangtze River, Yellow River, and Liaohe River based on the mitochondrial DNA D-loop region. The results showed that the length of the D-loop gene segment used in this study was 477 bp, which contained a total of 234 variation sites and 131 parsimony information sites for all tested samples. The 262 samples from six populations had 110 haplotypes, which consisted of 90 unique haplotypes and 20 shared haplotypes. The haplotype diversity index (Hd) of the six populations ranged from 0.88889 to 0.96522, and the nucleotide diversity index (π) ranged from 0.00887 to 0.01602. The genetic diversity levels of cultured populations were HC > YC > LC, whereas the levels of wild populations were HW > LW > YW(LC and LW indicate cultured and wild population of Liaohe River respectively, HC and HW indicate cultured and wild population of Yellow River respectively, YC and YW indicate cultured and wild population of Yangtze River respectively). The genetic distance (Da) ranged from 0.0119 to 0.0173 for the six populations. Regardless of their wild or cultured status, the genetic distance between the Liaohe and Yangtze populations was the smallest among three rivers. The genetic differentiation index (FST) was 0.12938 among the six populations. A neutral test of the six populations showed the values of Tajima's D and Fu's Fs were negative. The population's Tajima's D and Fu's Fs value test showed that these groups have a complex population history, and it is speculated that E. sinensis has had a large-scale group expansion event. The genetic distances of the six populations were analyzed. It was found that the overall genetic distance was not large. The results of genetic differentiation showed that there was no significant difference between the LW and YC, and YC and YW populations. The results of the AMOVA analysis of the six E. sinensis populations showed that population genetic differences mainly occurred in the six population. The phylogenetic trees may have resulted from of a certain degree of confounding caused by the cross-regional introduction of the Chinese mitten crab population in the Liaohe River system. These results provide valuable information for the evaluation, protection, and exploitation of E. sinensis resources.

Key words:Eriocheir sinensis; D-loop; geographical population; genetic diversity; genetic structure

ReleaseDate:2019-07-04 08:55:16

[1] Bureau of Fisheries and Fishery Management, Ministry of Agriculture. China Fisheries Statistical Yearbook in 2017[M]. Beijing:China Agriculture Press, 2017.[农业部渔业渔政管理局. 2017中国渔业统计年鉴[M]. 北京:中国农业出版社, 2017.]

[2] Sui L Y, Wu X G, Wille M, et al. Effect of dietary soybean lecithin on reproductive performance of Chinese mitten crab Eriocheir sinensis (H. Milne-Edwards) Broodstock[J]. Aquaculture International, 2009, 17(1):45-56.

[3] Sui L Y, Mathieu W, Cheng Y X, et al. Larviculture techniques of Chinese mitten crab Eriocheir sinensis[J]. Aquaculture, 2011, 315(1-2):16-19.

[4] Liu Q, Liu H, Wu X G, et al. Genetic varition of wild and cultured populations of Chinese mitten crab Eriocheir sinensis from the Yangze, Huanghe, and Liaohe River basins using microsatellite marker[J]. Oceanologia et Limnologia Sinica, 2015, 46(4):958-968.[刘青, 刘皓, 吴旭干, 等. 长江、黄河和辽河水系中华绒螯蟹野生和养殖群体遗传变异的微卫星分析[J]. 海洋与湖沼, 2015, 46(4):958-968.]

[5] Zhao H L, Wu X G, Jiang X D, et al. Comparative study on gonadal development and nutritional composition among Yangtze, Huang, and Liao River populations of adult female Eriocheir sinensis cultured in earth ponds[J]. Journal of Fisheries of China, 2017, 41(1):109-122.[赵恒亮, 吴旭干, 姜晓东, 等. 池塘养殖条件下长江、黄河和辽河种群中华绒螯蟹雌体卵巢发育和营养组成的比较研究[J]. 水产学报, 2017, 41(1):109-122.]

[6] Ying G, Chen T G, Yabe M. An economic analysis of consumer awareness towards China's GAP certification scheme for crab aquaculture[J]. Journal of Rural Problems, 2011, 47(2):243-248.

[7] Li Y, Li S F, Wang C H, et al. Establishment and application of morphological discrimination model for juveniles Eriocheir sinensis from Liaohe, Yangtze and Oujiang rivers[J]. Journal of Fisheries of China, 2001, 25(2):120-126.[李勇, 李思发, 王成辉, 等. 三水系中华绒螯蟹幼蟹形态判别程序的建立和使用[J]. 水产学报, 2001, 25(2):120-126.]

[8] Li C H, Li S F, Xing Y R, et al. Growth performance and its genotype-environment interaction analysis of Chinese mitten crab (Eriocheir sinensis) populations from the Yangtze River and the Liaohe River in ponds[J]. Acta Hydrobiologica Sinica, 2002, 26(4):335-341.[李晨虹, 李思发, 邢益于, 等. 池养长江蟹、辽中华绒螯蟹生长性能及其遗传-环境交互作用分析[J]. 水生生物学报, 2002, 26(4):335-341.]

[9] Wang W, Xu C, Zhang W B, et al. Comparative studies on morphological differences among four local populations of mitten crab[J]. Chinese Agricultural Science Bulletin, 2007, 23(6):648-653.[王武, 徐灿, 张文博, 等. 四个地方种群绒螯蟹形态差异的比较研究[J]. 中国农学通报, 2007, 23(6):648-653.]

[10] Li S F, Zou S M. Phylogensis of populations of mitten crabs (Eriocheir sinensis) in six river systems of mainland China:RAPD fingerprinting marker[J]. Journal of Fisheries of China, 1999, 23(4):325-330.[李思发, 邹曙明. 中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系:RAPD指纹标记[J]. 水产学报, 1999, 23(4):325-330.]

[11] Li H Y, Hou L, Wei F Y. RAPD analysis of wild, farmed, and premature mitten-handed crab (Eriocheir sinensis) in Liaohe River[J]. Fisheries Science, 2003, 22(3):1-3.[李海燕, 侯林, 魏凤艳. 中华绒螯蟹辽河种群野生、养殖及"性早熟"个体RAPD分析[J]. 水产科学, 2003, 22(3):1-3.]

[12] Boore J L. Animal mitochondrial genomes[J]. Nucleic Acids Research, 1999, 27(8):1767-1780.

[13] Sbisà E, Tanzariello F, Reyes A, et a1. Mammalian mitochondrial D-loop region structure analysis:identification of new conserved sequences and their functional and evolutionary implications[J]. Gene, 1997, 205(1-2):125-140.

[14] Sun H Y, Zhou K Y, Yang X J. Phylogenetic relationships of the mitten crabs ingerred from mitochondrial 16S rDNA partial sequences (Crustacean, Decapoda)[J]. Acta Zoologica Sinica, 2003, 49(5):592-599.[孙红英, 周开亚, 杨小军. 从线粒体16S rDNA序列探讨绒螯蟹类的系统发生关系[J]. 动物学报, 2003, 49(5):592-599.]

[15] Ge J C, Xu Z Q, Li X H, et al. Genetic characters of populations from four water systems revealed by mitochondrial COI gene sequence[J]. Journal of Fishery Sciences of China, 2011, 18(1):16-22.[葛家春, 许志强, 李晓晖, 等. 利用线粒体COI序列分析4水系中华绒螯蟹群体遗传学特征[J]. 中国水产科学, 2011, 18(1):16-22.]

[16] Xu J, Chan T Y, Tsang L M, et al. Phylogeography of the mitten crab Eriocheir sensu stricto in East Asia:Pleistocene isolation, population expansion and secondary contact[J]. Molecular Phylogenetics and Evolution, 2009, 52(1):45-56.

[17] Mamiatis T, Fritsch E F, Sambrook J, et al. Molecular cloning-A laboratory manual. New York:Cold Spring Harbor Laboratory. 1982, 545 S., 42$[J]. Engineering in Life Sciences, 1985, 5(1):104.

[18] Higgins D G, Sharp P M. CLUSTAL:a package for performing multiple sequence alignment on a microcomputer[J]. Gene, 1988, 73(1):237-244.

[19] Kumar S, Tamura K, Nei M. MEGA:Molecular evolutionary genetics analysis software for microcomputers[J]. Computer Applications in the Biosciences, 1994, 10(2):189-191.

[20] Kumar S, Nei M, Dudley J, et al. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Briefings in Bioinformatics, 2008, 9(4):299-306.

[21] Srivathsan A, Meier R. On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature[J]. Cladistics, 2012, 28(2):190-194.

[22] Librado P, Rozas J. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11):1451-1452.

[23] Horng T, Barton G M, Medzhitov R. TIRAP:an adapter molecule in the Toll signaling pathway[J]. Nature Immunology, 2001, 2:835-841.

[24] Excoffier L, Laval G, Schneider S. Arlequin (version 3.0):An integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online, 2005, 1:47-50.

[25] Rohlf F J. 1997. NTSYS-pc 2.1. Numerical Taxonomy and Multivariate Analysis System. Exeter Software, New York.

[26] Peng S M, Shi Z H, Hou J L. Comparative analysis on the genetic diversity of cultured and wild silver pomfret populations based on mtD-loop and CO I gene[J]. Journal of Fisheries of China, 2010, 34(1):19-25.[彭士明, 施兆鸿, 侯俊利. 基于线粒体D-loop区与CO I基因序列比较分析养殖与野生银鲳群体遗传多样性[J]. 水产学报, 2010, 34(1):19-25.]

[27] Byers D L. Evolution in heterogeneous environments and the potential of maintenance of genetic variation in traits of adaptive significance[J]. Genetica, 2005, 123:107.

[28] Miller A D, Murphy N P, Burridge C P, et al. Complete mitochondrial DNA sequences of the decapod crustaceans Pseudocarcinus gigas (Memppidae) and Macrobrachium rosenbergii (Palaemonidae)[J]. Marine Biotechnology, 2005, 7(4):339-349.

[29] Xu J M. Study and application of mitochondrial DNA in crabs[J]. Periodical of Ocean University of China, 2006, 36(6):879-884.[徐敬明. 蟹类线粒体DNA的研究与应用[J]. 中国海洋大学学报(自然科学版), 2006, 36(6):879-884.]

[30] Dong Z G, Li X Y, Wang P L, et al. Genetic diversity and genetic differentiation of swimming crab (Portunus trituberculatus) from six geographical populations of China Sea based on mitochondrial D-loop gene[J]. Journal of Fisheries of China, 2013, 37(9):1304-1312.[董志国, 李晓英, 王普力, 等. 基于线粒体D-loop基因的中国海三疣梭子蟹遗传多样性与遗传分化研究[J]. 水产学报, 2013, 37(9):1304-1312.]

[31] Zhang C, Li Q Q, Wu X G, et al. Genetic diversity and genetic structure of farmed and wild Chinese mitten crab (Eriocheir sinensis) populations from three major basins by mitochondrial DNA COI and Cyt b gene sequences[J]. Mitochondrial DNA Part A, 2018, 29(7):1081-1089.

[32] Sui L Y, Zhang F M, Wang X M, et al. Genetic diversity and population structure of the Chinese mitten crab Eriocheir sinensis, in its native range[J]. Marine Biology, 2009, 156(8):1573-1583.

[33] Grant W, Bowen B W. Shallow population histories in deep evolutionary lineages of marine fishes:insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5):415-426.

[34] Qiu G F, Xu Q T, Wang L Q, et al. Molecular taxonomy and phylogeny of four species of Eriocheir (Decapoda:Brachyura:Grapsidae)[J]. Acta Zoologica Sinica, 2001, 47(6):640-647.[邱高峰, 徐巧婷, 王丽卿, 等. 四种绒螯蟹分子分类与系统发育[J]. 动物学报, 2001, 47(6):640-647.]

[35] Wang Z Q, Huang S, Mao H C, et al. Genetic differentiation analysis of the even and odd year populations of Chinese mitten crab[J]. Journal of Shanghai Ocean University, 2013, 22(5):657-664.[王中清, 黄姝, 茅海成, 等. 中华绒螯蟹奇、偶年天然群体的遗传差异分析[J]. 上海海洋大学学报, 2013, 22(5):657-664.]

[36] Zhu Z Y, Wang Y J, Shi Y H, et al. Use of fluorescently labeled microsatellites to access genetic diversity of cultured Chinese mitten crab, Eriocheir sinensis[J]. Periodical of Ocean University of China, 2007, 37(4):591-596.[朱泽远, 王亚菊, 施用晖, 等. 荧光标记微卫星分析人工饲养中华绒螯蟹的遗传多样性[J]. 中国海洋大学学报(自然科学版), 2007, 37(4):591-596.]

[37] Chen D Q, Zhang C L, Lu C, et al. Polymorphism of D-loop sequence from mitochondrial genomes of different broodstocks of Gymnocypris przewalskii (Kessler)[J]. Journal of Fishery Sciences of China, 2006, 13(5):800-806.[陈大庆, 张春霖, 鲁成, 等. 青海湖裸鲤繁殖群体线粒体基因组D-loop区序列多态性[J]. 中国水产科学, 2006, 13(5):800-806.]

[38] Xu Z Q, Ge J C, Li Y H, et al. The population genetic structure analysis on four stocks of Eriocheir sinensis from different water systems using microsatellite markers[J]. Journal of Nanjing University (Natural Sciences), 2011, 47(1):82-90.[许志强, 葛家春, 李跃华, 等. 四水系中华绒螯蟹天然群体遗传特征的微卫星标记分析[J]. 南京大学学报(自然科学), 2011, 47(1):82-90.

[39] Boore J L. Animal mitochondrial genomes[J]. Nucleic Acids Research, 1999, 27(8):1767-1780.

[40] Wang C H, Li C H, Li S F. Mitochondrial DNA-inferred population structure and demographic history of the mitten crab (Eriocheir sensu stricto) found along the coast of mainland China[J]. Molecular Ecology, 2008, 17(15):3515-3527.

[41] Ma H Y, Ma C Y, Li C H, et al. First mitochondrial genome for the red crab (Charybdis feriata) with implication of phylogenomics and population genetics[J]. Scientific Reports, 2015, 5:Article No. 11524.

[42] Fang D Q, Roose M L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers[J]. Theoretical and Applied Genetics, 1997, 95(3):408-417.