doi:

DOI: 10.3724/SP.J.1118.2019.18391

Journal of Fishery Sciences of China (中国水产科学) 2019/26:3 PP.504-511

Assessment of the growth of eight dominant fish species and their resource development in important tributaries of the Three Gorges Reservoir area


Abstract:
Accurate understanding of the changes in fish resources and growth characteristic in important tributaries in the Three Gorges Reservoir can provide a scientific basis for fishery management and resource conservation in the region. This study was based on fishery information collected in 36 important tributaries of the Three Gorges Reservoir area in November and December 2015 and May, June, and September 2016. The growth and development status of eight species of dominant fish was evaluated using the FiSAT Ⅱ software developed by the Food and Agriculture Organization of the United Nations (FAO). These species were Cyprinus carpio, Pseudobagrus vachellii, Carassius auratus, Saurogobio dabryi, Pseudobagrus nitidus, Hemiculter leucisculus, Squalidus argentatus, and Pseudobrama simoni. The growth and death parameters were estimated using the body length frequency distribution method (ELEFAN I), and the resource change trend was evaluated according to the Beverton-Holt model. The results showed the following. The body length and body weight of the eight species of fish were in a power function, and the growth index (b) was between 2.74 and 3.11, which is an approximate constant velocity growth. The growth coefficient (K) values of the eight species of fish were all greater than 0.2, which indicated a rapid growth type. The growth performance index (φ') was between 2.83 and 5.25, Cyprinus carpio was the highest at 5.25, and Squalidus argentatus was the lowest at only 2.83. The development rates of Pseudobrama simoni (0.2) and Carassius auratus (0.4) were less than 0.5 and less than Emax; the development rates of the remaining six species were 0.5 and above. The length of the opening of Cyprinus carpio, Pseudobagrus vachelli, Saurogobio dabryi, Pseudobagrus nitidus, Hemiculter leucisculus, and Squalidus argentatus should be controlled at 289 mm, 253 mm, 134 mm, 102 mm, 71 mm, and 52 mm, respectively, and fish resources can be effectively restored. From these results, we can conclude that the development of important tributary fish resources in the Three Gorges reservoir area was excessive. The growth rate of omnivorous and carnivorous fish was increasing, but the benthic food fish were decreasing. We conclude that the upper reaches of the Yangtze River should focus on the protection of endemic species and the maintenance of biodiversity. Key waters should be forbidden from fishing throughout the year, so aquatic organisms can play out their ecological roles and improve the stability of the Yangtze River aquatic ecosystem.

Key words:upper Yangtze River; tributary of the Three Gorges Reservoir; catch; growth; resource development

ReleaseDate:2019-07-04 08:55:17



[1] Yi Y J, Tang C H, Yi T C, et al. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China[J]. Ecotoxicology and Environmental Safety, 2017, 145:295-302.

[2] Yang Z B, Liu Y Y, He R T, et al. Responses of benthic macroinvertebrates in tributaries of different hydrological regimes in the Three Gorges Reservoir region to reservoir impoundment[J]. Acta Ecologica Sinica, 2018, 38(20):7231-7241.[杨振冰, 刘园园, 何蕊廷, 等. 三峡库区不同水文类型支流大型底栖动物对蓄水的响应[J]. 生态学报, 2018, 38(20):7231-7241.]

[3] Yang Z, Tang H Y, Gong Y, et al. The spatial-temporal distribution characteristics of the endemic fish in the upper reaches of the Yangtze River under the normal operation of the Three Gorges Reservoir[J]. Ecology and Environmental Monitoring of Three Gorges, 2017, 2(1):1-10.[杨志, 唐会元, 龚云, 等. 正常运行条件下三峡库区干流长江上游特有鱼类时空分布特征研究[J]. 三峡生态环境监测, 2017, 2(1):1-10.]

[4] Li J G, Zhang L F, Liao W L, et al. Earthquakes in the fold structure-the genesis of the M4.3 earthquake sequence in the Three Gorges Reservoir area in 2017[J]. Chinese Journal of Geophysics, 2018, 61(9):3701-3712.[李井冈, 张丽芬, 廖武林, 等. 褶皱构造中的地震——2017年三峡库区巴东M4.3地震序列成因讨论[J]. 地球物理学报, 2018, 61(9):3701-3712.]

[5] Xiong F, Liu H Y, Duan X B, et al. Stock assessment of Coreius guichenoti in Jiangjin and Yibin sections of the upper Yangtze River[J]. Chinese Journal of Zoology, 2014, 49(6):852-859.[熊飞, 刘红艳, 段辛斌, 等. 长江上游江津和宜宾江段圆口铜鱼资源量估算[J]. 动物学杂志, 2014, 49(6):852-859.]

[6] Xiong F, Liu H Y, Duan X B, et al. Population parameters and population abundance of Rhinogobio cylindricus in Zhuyangxi section of the upper Yangtze River[J]. Acta Ecologica Sinica, 2015, 35(22):7320-7327.[熊飞, 刘红艳, 段辛斌, 等. 长江上游朱杨溪江段圆筒吻鮈种群参数和资源量[J]. 生态学报, 2015, 35(22):7320-7327.]

[7] Xin J F, Yang Y F, Duan Z H, et al. Population characteristics and species conservation of Rhinogobio ventralis in upper reaches of Yangtze River[J]. Chinese Journal of Ecology, 2010, 29(7):1377-1381.[辛建峰, 杨宇峰, 段中华, 等. 长江上游长鳍吻鮈的种群特征及其物种保护[J]. 生态学杂志, 2010, 29(7):1377-1381.]

[8] Tian H W, Duan X B, Xiong X, et al. Estimation of growth and population parameters of elongate loach (Leptobotia elongata) in the upper reaches of the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2013, 22(10):1305-1312.[田辉伍, 段辛斌, 熊星, 等. 长江上游长薄鳅生长和种群参数的估算[J]. 长江流域资源与环境, 2013, 22(10):1305-1312.]

[9] Duan P X, Yang Z, Tang H Y, et al. Study on age, growth, reproduction and the status of resource development of Culter oxycephaloides (Kreyenberg et Pappenheim) in the Xiao River[J]. Acta Hydrobiologica Sinica, 2015, 39(4):695-704.[段鹏翔, 杨志, 唐会元, 等. 小江拟尖头鲌的年龄, 生长, 繁殖及其资源开发状况研究[J]. 水生生物学报, 2015, 39(4):695-704.]

[10] Chen Y Y. Fauna Sinica:Osteichthyes, Cypriniformes, Ⅱ[M]. Beijing:Science Press, 1998:1-454.[陈宜瑜. 中国动物志·硬骨鱼纲·鲤形目(中卷)[M]. 北京:科学出版社, 1998:1-454.]

[11] Yue P Q. Fauna Sinica:Osteichthyes, Cypriniformes, Ⅲ[M]. Beijing:Science Press, 2000:1-567.[乐佩琦. 中国动物志·硬骨鱼纲·鲤形目(下卷)[M]. 北京:科学出版社, 2000:1-567.]

[12] Chu X L, Zheng B S, Dai D Y. Fauna Sinica:Osteichthyes, Siluriformes[M]. Beijing:Science Press, 1999:34-191.[褚新洛, 郑葆珊, 戴定远. 中国动物志·硬骨鱼纲·鲇形目[M]. 北京:科学出版社, 1999:34-191.]

[13] Ding R H. The Fishes of Sichuan[M]. Chengdu:Sichuan Publishing House of Science & Technology, 1994:1-539.[丁瑞华. 四川鱼类志[M]. 成都:四川科学技术出版社, 1994:1-539.]

[14] Jiang Z G, Jiang J P, Wang Y Z, et al. Red list of China's vertebrates[J]. Biodiversity Science, 2016, 24(5):500-551.[蒋志刚, 江建平, 王跃招, 等. 中国脊椎动物红色名录[J]. 生物多样性, 2016, 24(5):500-551.]

[15] Wo J, Xu B D, Xue Y, et al. Temporo-spatial heterogeneity of dominant fish species in the Jiaozhou Bay community[J]. Journal of Fishery Sciences of China, 2017, 24(5):1091-1098.[沃佳, 徐宾铎, 薛莹, 等. 胶州湾鱼类群落优势种组成的时空变化[J]. 中国水产科学, 2017, 24(5):1091-1098.]

[16] Chen G B, Li Y Z, Chen P M, et al. Optimum interval class size of length-frequency analysis of fish[J]. Journal of Fishery Sciences of China, 2008, 15(4):659-666.[陈国宝, 李永振, 陈丕茂, 等. 鱼类最佳体长频率分析组距研究[J]. 中国水产科学, 2008, 15(4):659-666.]

[17] Pauly D. Theory and management of tropical multi species stocks:a review, with emphasis on the Southeast Asian demersal fisheries[J]. Working Papers, 1979, 26(5):22-29.

[18] Pauly D, Munro J L. Once more on the comparison of growth in fishes and invertebrates[J]. Fishbyte, 1984, 2:21-22.

[19] Pauly D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks[J]. ICES Journal of Marine Science, 1980, 39(2):175-192.

[20] Froese R, Binohlan C. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data[J]. Journal of Fish Biology, 2010, 56(4):758-773.

[21] Branstetter S. Age and growth estimates for blacktip, Carcharhinus limbatus, and spinner, C. brevipinna, sharks from the northwestern gulf of Mexico[J]. Copeia, 1987, 1987(4):964-974.

[22] Beverton R J H, Holt S J. A review of the lifespans and mortality rates of fishes in nature, and their relation to growth and other physiological characteristics[M]//CIBA Foundation Symposium-The Lifespan of Animals (Colloquia on Ageing). Wiley Online Library, 1959, 5:142-180.

[23] Xiong F, Liu S P, Duan X B, et al. Age and growth of Cyprinus carpio L. in Poyang Lake[J]. Journal of Hydroecology, 2009, 30(4):66-70.[熊飞, 刘绍平, 段辛斌, 等. 鄱阳湖鲤的年龄与生长特征[J]. 水生态学杂志, 2009, 30(4):66-70.]

[24] Zhu Q G, Wu Z Q, Liu H Z. Age and growth characteristics of Carassius auratus in poyang lake[J]. Jiangxi Fishery Sciences and Technology, 2010(4):25-29.[朱其广, 吴志强, 刘焕章. 鄱阳湖鲫的年龄与生长特征[J]. 江西水产科技, 2010(4):25-29.]

[25] Xu D P, Zhang M Y, Zhou Y F, et al. Growth characteristics and morphological features of Pseudobrama simoni in Changshu section of Yangtze River[J]. Journal of Dalian Ocean University, 2014, 29(4):397-402.[徐东坡, 张敏莹, 周彦锋, 等. 长江常熟江段似鳊的生长特征及形态特性[J]. 大连海洋大学学报, 2014, 29(4):397-402.]

[26] Xiao T Y, Sheng L Z, Su J M, et al. Study on morphology, growth and reproduction of Pelteobagrus vacleii[J]. Journal of Hunan Agricultural University:Natural Sciences, 2002, 28(4):333-336.[肖调义, 盛玲芝, 苏建明, 等. 洞庭湖瓦氏黄颡鱼的形态与生长及繁殖特性[J]. 湖南农业大学学报:自然科学版, 2002, 28(4):333-336.]

[27] Wang T, Huang D, Zhao Y, et al. Age, growth and mortality of invasive sharpbelly, Hemiculter leucisculus (Basilewski, 1855) in Erhai Lake, China[J]. Journal of Applied Ichthyology, 2013, 29(6):1279-1285.

[28] Wang H S, Shen J Z, Li X, et al. A study of the age, growth and mortality of Squalidus argentatus in Tian-e-zhou Oxbow of Yangtze River[J]. Journal of Hydroecology, 2013, 34(2):7-13.[王海生, 沈建忠, 李霄, 等. 长江天鹅洲故道银鮈的年龄、生长和死亡率研究[J]. 水生态学杂志, 2013, 34(2):7-13.]

[29] Zhang Y S. The growth of the carp, Cyprinus carpio, at Tongguan region and after the filling of the Sanmenxia reservoir[J]. Acta Zoologica Sinica, 1965, 17(1):38-47.[张玉书. 三门峡水库潼关地区蓄水前后鲤鱼的生长[J]. 动物学报, 1965, 17(1):38-47.]

[30] Niu Y J, Ren D Q, Chen S A, et al. Growth Characteristics of Gymnodiptychus dybowskii Kessler in Three Tributaries of the Ili River in Xinjiang, China[J]. Journal of Hydroecology, 2015, 36(6):59-65.[牛玉娟, 任道全, 陈生熬, 等. 伊犁河三支流新疆裸重唇鱼的生长特性研究[J]. 水生态学杂志, 2015, 36(6):59-65.]

[31] Chen D Q, Liu S P, Duan X B, et al. A preliminary study of the fisheries biology of main commercial fishes in the middle and upper reaches of the Yangtze River[J]. Acta Hydrobiologica Sinica, 2002, 26(6):618-622.[陈大庆, 刘绍平, 段辛斌, 等. 长江中上游主要经济鱼类的渔业生物学特征[J]. 水生生物学报, 2002, 26(6):618-622.]

[32] Pauly D. A review of the ELEFAN system for analysis of length-frequency data in fish and aquatic invertebrates[C]//Proceedings of ICLARM Conference on Length-Based Methods in Fisheries Research, Manila, 1987:7-34.

[33] Gulland J A. Fish Stock Assessment:A Manual of Basic Methods[M]. New York:FAO/Wiley Series on Food and Agriculture, 1971:1223.

[34] Mehanna S F. Stock assessment and management of the Egyptian sole Solea aegyptiaca chabanaud, 1927(Osteichthyes:Soleidae), in the Southeastern Mediterranean, Egypt[J]. Turkish Journal of Zoology, 2007, 31(4):379-388.