doi:

DOI: 10.3724/SP.J.1118.2019.18221

Journal of Fishery Sciences of China (中国水产科学) 2019/26:3 PP.546-558

The influence of feeding CAVP on intestinal microbiota of tilapia (Oreochromis niloticus)


Abstract:
The nutrient content of abalone viscera is similar to that of muscle. It contains rich proteins and various biologically active substances. However, the abalone viscera are often abandoned when processing or during consumption of abalone. This is not only a great waste, but also causes pollution to the environment. In recent years, with the exploration and research of marine active substances, abalone viscera have also been studied and developed. Intestinal microorganisms are known as "external organs" of the host, they are directly involved in the host's nutrition, immunity, metabolism, and so on. They play important roles in maintaining the health of the host. A few studies have reported the in vitro and in vivo antioxidant activity of abalone polysaccharides and polypeptides; however, the effects of abalone active substances on the intestinal microorganism have not been previously reported. In this paper, the intestinal microbiota of tilapia and the influence of feeding abalone visceral crude polysaccharide (CAVP) on the intestinal microbiota were studied by PCR-DGGE and Illumina MiSeq sequencing. A total of 13 bacterial phyla were detected in the intestines of tilapia:Fusobacteria (77.84%) was the dominant phylum, Bacteroidetes (8.59%), Chlamydiae (6.18%), Proteobacteria (5.84%), and Actinobacteria (1.20%) were the subdominant phyla. Saccharibacteria, Firmicutes, Planctomycetes, Verrucomicrobia, TM6_Dependentiae, Cyanobacteria, Spirochaetae, Acidobacteria, and some unknown groups were also detected. At the genus level, Cetobacterium (77.84%) was the dominant genus, Neochlamydia (5.80%), Plesiomonas (2.64%), and Acinetobacter (1.13%) were the subdominant genera. There was also an unknown genus of the family Porphyromonadaceae, accounting for 8.29%. In addition, Mycobacterium, Alsobacter, Aquicella, Pseudomonas, Aeromonas, Alpinimonas, and some unknown genera were also detected. The addition of CAVP diet had an obvious influence on the intestinal microbiota of tilapia because the CAVP-treated samples and the control samples without CAVP clustered separately. After feeding CAVP, the abundance of Actinobacteria, Saccharibacteria, Verrucomicrobia, and TM6_Dependentiae decreased significantly (P < 0.05). At the genus level, the abundance of Plesiomonas and Cetobacterium was up-regulated, whereas the Neochlamydia, Acinetobacter, Mycobacterium, Alsobacter, Aquicella, Pseudomonas, Aeromonas, and Alpinimonas decreased, of which the abundance of Mycobacterium, Alsobacter, Aquicella, and Plesiomonas decreased significantly compared with that of the control (P < 0.05). After feeding CAVP, the abundance of some pathogens, such as Mycobacterium abscessus, Acinetobabacter baumannii, Aeromonas sharmana, Tsukamurella tyrosinosolvens, and Pseudomonas aeruginosa decreased, in which the Mycobacterium abscessus and Tsukamurella tyrosinosolvens decreased significantly compared with that of the control (P < 0.05). On the other hand, the probiotic bacteria, such as Cetobacterium, increased. This study investigated the effects of CAVP on the host with regard to intestinal microbes; it provides insight into the efficient evaluation of marine active substances, and also lays a theoretical foundation for the development and utilization of bioactive substances and the development of prebiotics from abalone viscera. In addition, this study is of importance in recycling abalone viscera and reducing environmental pollution.

Key words:intestinal microbiota; abalone visceral crude polysaccharide (CAVP); Illumina MiSeq sequencing; Oreochromis niloticus

ReleaseDate:2019-07-04 08:55:17



[1] Shen D S, Zheng J. Prebiotics and gut microbial ecosystem[J]. Chinese Journal of Microecology, 2013, 25(6):742-744.[沈定树, 郑静. 益生元与肠道微生态[J]. 中国微生态学杂志, 2013, 25(6):742-744.]

[2] Gibson G R, Hutkins R, Sanders M E, et al. Expert consensus document:the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J]. Nature Reviews Gastroenterology & Hepatology, 2017, 14(8):491-502.

[3] Ma X J, Wang L P, Zhao Y, et al. Effects of mannan-oligosaccharides on intestinal microorganisms of tilapia larvae[J]. Microbiology China, 2010, 37(5):708-713.[马相杰, 汪立平, 赵勇, 等. 甘露寡糖对罗非鱼幼鱼肠道微生物的影响[J]. 微生物学通报, 2010, 37(5):708-713.]

[4] Lv H Y, Zhou Z G, Rudeaux F, et al. Effects of dietary short chain fructo oligosaccharides on intestinal microflora, mortality and growth performance of Oreochromis aureus♂×O. niloticus♀[J]. Chinese Journal of Animal Nutrition, 2007, 19(6):691-697.[吕慧源, 周志刚, Rudeaux F, 等. 饲喂果寡糖对奥尼罗非鱼Oreochromis aurea♂×O. nilotica♀肠道菌群、成活率及生长性能的影响[J]. 动物营养学报, 2007, 19(6):691-697.]

[5] Shang Q H, Jie Y H, Zhang G G, et al. Immune regulation roles of phytogenic polysaccharides and its mechanisms[J]. Chinese Journal of Animal Nutrition, 2015, 27(1):49-58.[尚庆辉, 解玉怀, 张桂国, 等. 植物多糖的免疫调节作用及其机制研究进展[J]. 动物营养学报, 2015, 27(1):49-58.]

[6] Wang J, Wei H C, He C B, et al. Antioxidant activity of polysaccharides from abalone viscera[J]. Food Science, 2017, 38(15):115-121.[王姣, 魏好程, 何传波, 等. 鲍内脏多糖的抗氧化活性[J]. 食品科学, 2017, 38(15):115-121.]

[7] Zhang Y H, Jiang B, Liu C J, et al. Extraction technology of polysaccharide in abalone[J]. Journal of Minzu University of China:Natural Sciences Edition, 2011, 20(3):20-23.[张月红, 姜波, 刘长建, 等. 鲍鱼多糖提取工艺的研究[J]. 中央民族大学学报:自然科学版, 2011, 20(3):20-23.]

[8] Miao Y L, Fang F Z, Song W D. Hydrolysis of abalone's viscera using HCl and analysis of the Maillard reaction products[J]. South China Fisheries Science, 2009, 5(4):54-57.[苗艳丽, 方富永, 宋文东. 鲍鱼内脏的酸水解及其梅拉德反应产物分析[J]. 南方水产科学, 2009, 5(4):54-57.]

[9] Suleria H A R, Masci P P, Addepalli R, et al. In vitro anti-thrombotic and anti-coagulant properties of blacklip abalone (Haliotis rubra) viscera hydrolysate[J]. Analytical and Bioanalytical Chemistry, 2017, 409(17):4195-4205.

[10] Liu N, Zhu B W, Sun L M, et al. Antioxidant activity of polysaccharide extracted from abalone gonad[J]. Journal of Dalian Polytechnic University, 2011, 30(3):177-179.[刘娜, 朱蓓薇, 孙黎明, 等. 鲍鱼性腺多糖的体内抗氧化活性[J]. 大连工业大学学报, 2011, 30(3):177-179.]

[11] Zhu L L, Sun L M, Li D M, et al. The anti-tumor effect of the proteoglycan from abalone viscera against H22 cell line in vivo[J]. Acta Nutrimenta Sinica, 2009, 31(5):478-481.[朱莉莉, 孙黎明, 李冬梅, 等. 鲍鱼内脏蛋白多糖体内对H22肝癌的抑制作用[J]. 营养学报, 2009, 31(5):478-481.]

[12] Zhou D Y, Zhu B W, Qiao L, et al. In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone (Haliotis discus hannai Ino) viscera[J]. Food and Bioproducts Processing, 2012, 90(2):148-154.

[13] Wang L P, Ma X J, Leng X J, et al. Effect mannan oligosaccharides on intestinal microflora of tilapia[J]. Science and Technology of Food Industry, 2010, 31(10):142-145.[汪立平, 马相杰, 冷向军, 等. 甘露寡糖对罗非鱼肠道菌群的影响[J]. 食品工业科技, 2010, 31(10):142-145.]

[14] Wang J, Wei H C, He C B, et al. Optimization for extracted conditions of abalone viscera[J]. Journal of Food Safety & Quality, 2015, 6(8):3177-3185.[王姣, 魏好程, 何传波, 等. 鲍内脏酶解工艺条件的优化[J]. 食品安全质量检测学报, 2015, 6(8):3177-3185.]

[15] Roeselers G, Mittge E K, Stephens W Z, et al. Evidence for a core gut microbiota in the zebrafish[J]. The ISME Journal, 2011, 5(10):1595-1608.

[16] Wu S G, Tian J Y, Gatesoupe F J, et al. Intestinal microbiota of gibel carp (Carassius auratus gibelio) and its origin as revealed by 454 pyrosequencing[J]. World Journal of Microbiology & Biotechnology, 2013, 29(9):1585-1595.

[17] Adeoye A A, Jaramillo-Torres A, Fox S W, et al. Supplementation of formulated diets for tilapia (Oreochromis niloticus) with selected exogenous enzymes:Overall performance and effects on intestinal histology and microbiota[J]. Animal Feed Science and Technology, 2016, 215:133-143.

[18] Han S F, Liu Y C, Zhou Z G. Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences[J]. Aquaculture Research, 2010, 42:47-56.

[19] Ray C, Bujan N, Tarnecki A. Analysis of the gut microbiome of nile tilapia Oreochromis niloticus L. fed diets supplemented with previda® and saponin[J]. Journal of Fisheries Sciences, 2017, 11(2):36-45.

[20] Liu W S, Wang W W, Ran C, et al. Effects of dietary scFOS and lactobacilli on survival, growth, and disease resistance of hybrid tilapia[J]. Aquaculture, 2017, 470:50-55.

[21] Ghanbari M, Kneifel W, Domig K J. A new view of the fish gut microbiome:advances from next-generation sequencing[J]. Aquaculture, 2015, 448:464-475.

[22] Ni J J, Yan Q Y, Yu Y H, et al. Factors influencing the grass carp gut microbiome and its effect on metabolism[J]. FEMS Microbiology Ecology, 2014, 87(3):704-714.

[23] Saha S, Roy R N, Sen S K, et al. Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes)[J]. Aquaculture Research, 2010, 37(4):380-388.

[24] Trust T J, Sparrow R A. The bacterial flora in the alimentary tract of freshwater salmonid fishes[J]. Canadian Journal of Microbiology, 1974, 20(9):1219-1228.

[25] Ye L, Amberg J, Chapman D, et al. Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish[J]. The ISME Journal, 2014, 8(3):541-551.

[26] Xia Y, Lu M X, Chen G, et al. Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus[J]. Fish & Shellfish Immunology, 2018, 76:368-379.

[27] Donkeng N N, Maiwore J, Ngoune L T, et al. Characterization of the bacterial flora of tilapia (Oreochoromis niloticus) harvested from four lakes in the north of Cameroon[J]. African Journal of Biotechnology, 2011, 10(71):16016-16023.

[28] Egerton S, Culloty S, Whooley J, et al. The gut microbiota of marine fish[J]. Frontiers in Microbiology, 2018, 9:873.

[29] Larsen A M, Mohammed H H, Arias C R. Characterization of the gut microbiota of three commercially valuable warmwater fish species[J]. Journal of Applied Microbiology, 2014, 116(6):1396-1404.

[30] Tian J, Sun L W, Wen H, et al. Effect of dietary chitooligosaccharides on growth performance, gut flora and intestinal structure of juvenile GIFT tilapia Oreochromis niloticus[J]. Journal of Fishery Sciences of China, 2013, 20(3):561-568.[田娟, 孙立威, 文华, 等. 壳寡糖对吉富罗非鱼幼鱼生长性能、前肠组织结构及肠道主要菌群的影响[J]. 中国水产科学, 2013, 20(3):561-568.]

[31] Gu H J, Wang Y, Xi H, et al. Effects of grifola frondosa polysaccharides on non-specific immunity in nile tilapia[J]. Fisheries Science, 2013, 32(8):453-458.[顾华杰, 王琰, 奚红, 等. 灰树花多糖对罗非鱼非特异性免疫力的影响[J]. 水产科学, 2013, 32(8):453-458.]

[32] Huang Y Z, Lin X, Wang Q X, et al. Effects of astragalus polysaccharide on structure of intestinal villus and intestinal immunocyte of tilapia[J]. Chinese Journal of Animal Nutrition, 2010, 22(1):108-116.[黄玉章, 林旋, 王全溪, 等. 黄芪多糖对罗非鱼肠绒毛形态结构及肠道免疫细胞的影响[J]. 动物营养学报, 2010, 22(1):108-116.]

[33] Brito T V, Barros F C N, Silva R O, et al. Sulfated polysaccharide from the marine algae Hypnea musciformis inhibits TNBS-induced intestinal damage in rats[J]. Carbohydrate Polymers, 2016, 151:957-964.

[34] Novotny L, Dvorska L, Lorencova A, et al. Fish:a potential source of bacterial pathogens for human beings. a review[J]. Veterinarni Medicina-UZPI (Czech Republic), 2004, 49(9):343-358.

[35] Zhang D F, Li A H, Gong X N. Research on the mycobacteriosis and its pathogen in sturgeons[J]. Acta Hydrobiologica Sinica, 2014, 38(3):495-504.[张德锋, 李爱华, 龚小宁. 鲟分枝杆菌病及其病原研究[J]. 水生生物学报, 2014, 38(3):495-504.]

[36] Shanmugham B, Pan A. Identification and characterization of potential therapeutic candidates in emerging human pathogen mycobacterium abscessus:a novel hierarchical in silico approach[J]. PLoS ONE, 2013, 8(3):e59126.

[37] Peleg A Y, Seifert H, Paterson D L. Acinetobacter baumannii:emergence of a successful pathogen[J]. Clinical Microbiology Reviews, 2008, 21(3):538-582.

[38] Sahl J W, Mariateresa D F, Spyros P, et al. Phylogenetic and genomic diversity in isolates from the globally distributed Acinetobacter baumannii ST25 lineage[J]. Scientific Reports, 2015, 5:15188.

[39] Tang Y S, Lu C P. Antimicrobial susceptibility testing of actinetobacter strains isolated from animal specimens[J]. Journal of Nanjing Agricultural University, 1997, 20(3):120-123.[汤雅殊, 陆承平. 动物源不动杆菌的药敏试验[J]. 南京农业大学学报, 1997, 20(3):120-123.]

[40] Pandey P K, Verma P, Kumar H, et al. Comparative analysis of fecal microflora of healthy full-term Indian infants born with different methods of delivery (vaginal vs cesarean):Acinetobacter sp. prevalence in vaginally born infants[J]. Journal of Biosciences, 2012, 37(S1):989-998.

[41] Karunakaran R, Halim H A, Ng K P, et al. Tsukamurella tyrosinosolvens intravascular catheter-related bacteremia in a haematology patient:a case report[J]. European Review for Medical and Pharmacological Science, 2011, 15(11):1343-1346.

[42] Santos P, Pinhal I, Rainey F A, et al. Gamma-proteobacteria Aquicella lusitana gen. nov., sp. nov., and Aquicella siphonis sp. nov. infect protozoa and require activated charcoal for growth in laboratory media[J]. Applied and Environmental Microbiology, 2003, 69(11):6533-6540.

[43] Bao Z H, Sato Y, Fujimura R, et al. Alsobacter metallidurans gen. nov., sp. nov., a thallium-tolerant soil bacterium in the order Rhizobiales[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(3):775-780.

[44] Vouga M, Diabi H, Boulos A, et al. Antibiotic susceptibility of Neochlamydia hartmanellae and Parachlamydia acanthamoebae in amoebae[J]. Microbes and Infection, 2015, 17(11-12):761-765.

[45] Li T T, Long M, Gatesoupe F J, et al. Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing[J]. Microbial Ecology, 2015, 69(1):25-36.

[46] Tsuchiya C, Sakata T, Sugita H. Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish[J]. Letters in Applied Microbiology, 2008, 46(1):43-48.

[47] Holmberg S D, Wachsmuth I K, Hickman-Brenner F W, et al. Plesiomonas enteric infections in the United States[J]. Annals of Internal Medicine, 1986, 105(5):690-694.

[48] Holmberg S D, Farmer J J Ⅲ. Aeromonas hydrophila and Plesiomonas shigelloides as causes of intestinal infections[J]. Reviews of Infectious Diseases, 1984, 6(5):633-639.

[49] Niedziela T, Lukasiewicz J, Jachymek W, et al. Core oligosaccharides of Plesiomonas shigelloides O54:H2(Strain CNCTC 113/92):structural and serological analysis of the lipopolysaccharide core region, the o-antigen biological repeating unit, and the linkage between them[J]. Journal of Biological Chemistry, 2002, 277(14):11653-11663.

[50] De La Rosa M G N. Preliminary evaluation of the bacterial populations associated with the intestinal tract of tilapia (Oreochromis niloticus) exposed to essential oils of oregano in the diet[D]. Bogotá:National University of Colombia Faculty of Sciences, 2011.

[51] Zhao L P, Zhang F, Ding X Y, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380):1151-1156.