doi:

DOI: 10.3724/SP.J.1047.2013.00814

Journal of Geo-information Science (地球信息科学学报) 2013/15:6 PP.814-818

Analysis of Scale Effect Characteristics of DEM and Slope in Hilly Areas


Abstract:
In order to reveal the scale effect characteristics of DEM and slope grid with different size in hilly areas, the paper uses the typical hilly areas in Chuanshan County in Suining City as the pilot-area. Multi-scale DEM and slope with the resolution of 1m, 2.5m, 5m, 10m, 15m, 20m, 25m and 30m are generated by using contours, elevations, rivers and other data from 1:10000 scale maps. The qualitative scale effect of elevation and slope is revealed by comparing the frequency distribution of multi-scale elevation and slope. The concept of standard frequency error for testing the loss or error of accuracy created by scaling is proposed here. The correlation between altitude error(y) and scale(x) is positively significant at 0.01 confidence level, and its coefficient is 0.863. The model: y=-0.0004x2+0.0058x-0.0042 can be used to significantly describe the quantitative scale effect of altitude at 0.01 confidence level. The correlation between slope error(y) and scale(x) is positively significant at 0.01 confidence level, and its coefficient is 0.855. The model: y=-0.0001x2+0.0032x-0.0025 can be used to significantly describe the quantitative scale effect of slope at 0.01 confidence level. The research has important implication for selecting the optimal scale in specified terrain analysis of hilly areas.

Key words:hilly areas,DEM,slope,standard frequency error,scale effect

ReleaseDate:2015-04-17 13:34:25



[1] 汤国安, 刘学军, 闾国年, 等.数字高程模型及地学分析的原理与方法[M].北京:科学出版社, 2005.

[2] 李发源, 汤国安, 贾旖旎.坡谱信息熵尺度效应及空间分异[J].地球信息科学, 2007, 9(4):13-18.

[3] 陈楠, 汤国安, 刘咏梅.基于不同比例尺的DEM地形信息比较[J].西北大学学报(自然科学版), 2003, 33(2):237-240.

[4] 陈楠, 王钦敏, 汤国安.基于单个栅格的DEM坡度与分辨率关系研究[J].中国矿业大学学报, 2007, 36(4):499-504.

[5] 汤国安, 龚健雅, 陈正江.数字高程模型地形描述精度量化模拟研究[J].测绘学报, 2001, 30(4):361-365.

[6] 贾敦新, 汤国安, 王春. DEM数据误差与地形描述误差对坡度精度的影响[J].地理信息科学学报, 2009, 11(1):43-49.

[7] 汤国安, 赵牡丹, 李天文. DEM提取黄土高原地面坡度的不确定性[J].地理学报, 2003, 58(6):824-830.

[8] 魏林宏, 郝振纯, 李丽.不同分辨率DEM的信息熵评价及其对径流模拟的影响[J].水电能源科学, 2004, 22(4):1-4.

[9] 杨勤科, 师维娟, Tim R.Mc Vicar. 水文地貌关系正确DEM的建立方法[J].中国水土保持科学, 2007, 5(4):1-6.

[10] Hao Z C, Chi C X, Wang L. A preliminary analysis of DEM space data resolution[J]. Advance in Earth Sciences, 2007, 5(4):1-6.

[11] 杨邦, 任立良, 王贵作.基于尺度转换的数字水系提取方法及应用[J].中山大学学报(自然科学版), 2009, 48(4):101-112.

[12] Gao J. Resolution and accuracy of terrain representation by grid DEMs at a Micro2scale[J]. International Journal of Geographical Information Science, 1997, 11(2):199-212.

[13] Theobald D M. Accuracy and bias issues in surface representation[C]. Accuracy of Spatial Databases, Bristol, PA, 1989

[14] Martz L W, Garbrecht J. The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models[J]. Hydrological Processes, 1998(12):843-855.

[15] Rieger W. A phenomenon-based approach to up slope contributing area and depressions in DEMs[J]. Hydrological Processes, 1998(12):857-872.

[16] Hutchinson M F. Calculation of hydrologically sound digital elevation models[C]. The 3rd International Symposium on Spatial Data Handling, Co-lumbus, 1988.

[17] 杨存建, 张增祥.矢量数据在多尺度栅格化中的精度损失模型探讨[J].地理研究, 2001, 20(4):416-422.