DOI: 10.3724/SP.J.1263.2011.12282

Journal of Geriatric Cardiology 2012/9:4 PP.401-407

High density lipoproteins and atherosclerosis: emerging aspects

High density lipoproteins (HDL) promote the efflux of excess cholesterol from peripheral tissues to the liver for excretion. This ability is responsible for the most relevant anti-atherogenic effect of HDL. The ability of HDL to promote cholesterol efflux results also in the modulation of a series of responses in the immune cells involved in atherosclerosis, including monocyte-macrophages, B and T lymphocytes. Furthermore, during inflammation, the composition of this class of lipoproteins varies to a large extent, thus promoting the formation of dysfunctional HDL. The aim of this review is to discuss the emerging role of HDL in modulating the activity of immune cells and immune-inflammatory mediators during atherogenesis.

Key words:High density lipoproteins,Apolipoprotein,Sphingosine-1-phosphate,Immune response

ReleaseDate:2014-07-21 16:32:19

1 Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell 2001; 104: 503-516.

2 Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol 2011; 12: 204-212.

3 Navab M, Ananthramaiah GM, Reddy ST, et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res 2004; 45: 993-1007.

4 von Eckardstein A, Nofer JR, Assmann G. High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2001; 21: 13-27.

5 Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364: 127-135.

6 Duong M, Collins HL, Jin W, et al. Relative contributions of ABCA1 and SR-BI to cholesterol efflux to serum from fibroblasts and macrophages. Arterioscler Thromb Vasc Biol 2006; 26: 541-547.

7 Norata GD, Pirillo A, Ammirati E, et al. Emerging role of high density lipoproteins as a player in the immune system. Atherosclerosis 2012; 220: 11-21.

8 Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1: 31-39.

9 Calabresi L, Gomaraschi M, Franceschini G. Endothelial protection by high-density lipoproteins: from bench to bedside. Arterioscler Thromb Vasc Biol 2003; 23: 1724-1731.

10 Collet X, Marcel YL, Tremblay N, et al. Evolution of mammalian apolipoprotein A-I and conservation of antigenicity: correlation with primary and secondary structure. J Lipid Res 1997; 38: 634-644.

11 Hansson GK, Bjorkholm M. Medicine. Tackling two diseases with HDL. Science 2010; 328: 1641-1642.

12 Yvan-Charvet L, Pagler T, Gautier EL, et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 2010; 328: 1689-1693.

13 Norata GD, Pirillo A, Catapano AL. HDLs, immunity, and atherosclerosis. Curr Opin Lipidol 2011; 22: 410-416.

14 Norata GD, Marchesi P, Pirillo A, et al. Long pentraxin 3, a key component of innate immunity, is modulated by high-density lipoproteins in endothelial cells. Arterioscler Thromb Vasc Biol 2008; 28: 925-931.

15 Deban L, Russo RC, Sironi M, et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat Immunol 2010; 11: 328-334.

16 Norata GD, Garlanda C, Catapano AL. The long pentraxin PTX3: a modulator of the immunoinflammatory response in atherosclerosis and cardiovascular diseases. Trends Cardiovasc Med 2010; 20: 35-40.

17 Norata GD, Marchesi P, Pulakazhi Venu VK, et al. Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis. Circulation 2009; 120: 699-708.

18 Khovidhunkit W, Kim MS, Memon RA, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 2004; 45: 1169-1196.

19 Coetzee GA, Strachan AF, van der Westhuyzen DR, et al. Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition. J Biol Chem 1986; 261: 9644-9651.

20 Han J, Ulevitch RJ. Limiting inflammatory responses during activation of innate immunity. Nat Immunol 2005; 6: 1198-1205.

21 Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol 2008; 8: 776-787.

22 Wurfel MM, Kunitake ST, Lichenstein H, et al. Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS. J Exp Med 1994; 180: 1025-1035.

23 Levine DM, Parker TS, Donnelly TM, et al. In vivo protection against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci U S A 1993; 90: 12040-12044.

24 Hubsch AP, Powell FS, Lerch PG, et al. A reconstituted, apolipoprotein A-I containing lipoprotein reduces tumor necrosis factor release and attenuates shock in endotoxemic rabbits. Circ Shock 1993; 40: 14-23.

25 Birjmohun RS, van Leuven SI, Levels JH, et al. High-density lipoprotein attenuates inflammation and coagulation response on endotoxin challenge in humans. Arterioscler Thromb Vasc Biol 2007; 27: 1153-1158.

26 Cai L, Ji A, de Beer FC, et al. SR-BI protects against endotoxemia in mice through its roles in glucocorticoid production and hepatic clearance. J Clin Invest 2008; 118: 364-375.

27 Gupta H, Dai L, Datta G, et al. Inhibition of lipopolysaccharide-induced inflammatory responses by an apolipoprotein AI mimetic peptide. Circ Res 2005; 97: 236-243.

28 Tobias PS, McAdam KP, Soldau K, et al. Control of lipopolysaccharide-high-density lipoprotein interactions by an acute-phase reactant in human serum. Infect Immun 1985; 50: 73-76.

29 Munford RS, Andersen JM, Dietschy JM. Sites of tissue binding and uptake in vivo of bacterial lipopolysaccharide-high density lipoprotein complexes: studies in the rat and squirrel monkey. J Clin Invest 1981; 68: 1503-1513.

30 Cabana VG, Siegel JN, Sabesin SM. Effects of the acute phase response on the concentration and density distribution of plasma lipids and apolipoproteins. J Lipid Res 1989; 30: 39-49.

31 Menschikowski M, Hagelgans A, Siegert G. Secretory phospholipase A2 of group IIA: is it an offensive or a defensive player during atherosclerosis and other inflammatory diseases? Prostaglandins Other Lipid Mediat 2006; 79: 1-33.

32 Van Lenten BJ, Navab M, Shih D, et al. The role of high-density lipoproteins in oxidation and inflammation. Trends Cardiovasc Med 2001; 11: 155-161.

33 Feingold KR, Memon RA, Moser AH, et al. Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response. Atherosclerosis 1998; 139: 307-315.

34 Cao Y, Stafforini DM, Zimmerman GA, et al. Expression of plasma platelet-activating factor acetylhydrolase is transcriptionally regulated by mediators of inflammation. J Biol Chem 1998; 273: 4012-4020.

35 Memon RA, Fuller J, Moser AH, et al. In vivo regulation of plasma platelet-activating factor acetylhydrolase during the acute phase response. Am J Physiol 1999; 277: R94-R103.

36 Navab M, Anantharamaiah GM, Reddy ST, et al. HDL as a biomarker, potential therapeutic target, and therapy. Diabetes 2009; 58: 2711-2717.

37 Banka CL, Yuan T, de Beer MC, et al. Serum amyloid A (SAA): influence on HDL-mediated cellular cholesterol efflux. J Lipid Res 1995; 36: 1058-1065.

38 McGillicuddy FC, de la Llera Moya M, Hinkle CC, et al. Inflammation impairs reverse cholesterol transport in vivo. Circulation 2009; 119: 1135-1145.

39 Clifton PM, Mackinnon AM, Barter PJ. Effects of serum amyloid A protein (SAA) on composition, size, and density of high density lipoproteins in subjects with myocardial infarction. J Lipid Res 1985; 26: 1389-1398.

40 Van Lenten BJ, Hama SY, de Beer FC, et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest 1995; 96: 2758-2767.

41 Lusis AJ. Atherosclerosis. Nature 2000; 407: 233-241.

42 Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340: 115-126.

43 Oram JF. ATP-binding cassette transporter A1 and cholesterol trafficking. Curr Opin Lipidol 2002; 13: 373-381.

44 Wang X, Collins HL, Ranalletta M, et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest 2007; 117: 2216-2224.

45 Moudry R, Spycher MO, Doran JE. Reconstituted high density lipoprotein modulates adherence of polymorphonuclear leukocytes to human endothelial cells. Shock 1997; 7: 175-181.

46 Bensinger SJ, Bradley MN, Joseph SB, et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 2008; 134: 97-111.

47 Wilhelm AJ, Zabalawi M, Grayson JM, et al. Apolipoprotein A-I and its role in lymphocyte cholesterol homeostasis and autoimmunity. Arterioscler Thromb Vasc Biol 2009; 29: 843-849.

48 Landry YD, Denis M, Nandi S, et al. ATP-binding cassette transporter A1 expression disrupts raft membrane microdomains through its ATPase-related functions. J Biol Chem 2006; 281: 36091-36101.

49 Kabouridis PS, Janzen J, Magee AL, et al. Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur J Immunol 2000; 30: 954-963.

50 Anderson HA, Hiltbold EM, Roche PA. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol 2000; 1: 156-162.

51 Jury EC, Flores-Borja F, Kabouridis PS. Lipid rafts in T cell signalling and disease. Semin Cell Dev Biol 2007; 18: 608-615.

52 Kabouridis PS. Lipid rafts in T cell receptor signalling. Mol Membr Biol 2006; 23: 49-57.

53 Zeyda M, Stulnig TM. Lipid Rafts & Co.: an integrated model of membrane organization in T cell activation. Prog Lipid Res 2006; 45: 187-202.

54 Hiltbold EM, Poloso NJ, Roche PA. MHC class II-peptide complexes and APC lipid rafts accumulate at the immunological synapse. J Immunol 2003; 170: 1329-1338.

55 Poloso NJ, Roche PA. Association of MHC class II-peptide complexes with plasma membrane lipid microdomains. Curr Opin Immunol 2004; 16: 103-107.

56 Setterblad N, Roucard C, Bocaccio C, et al. Composition of MHC class II-enriched lipid microdomains is modified during maturation of primary dendritic cells. J Leukoc Biol 2003; 74: 40-48.

57 Eren E, Yates J, Cwynarski K, et al. Location of major histocompatibility complex class II molecules in rafts on dendritic cells enhances the efficiency of T-cell activation and proliferation. Scand J Immunol 2006; 63: 7-16.

58 Zilber MT, Setterblad N, Vasselon T, et al. MHC class II/CD38/CD9: a lipid-raft-dependent signaling complex in human monocytes. Blood 2005; 106: 3074-3081.

59 Murphy AJ, Woollard KJ, Hoang A, et al. High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler Thromb Vasc Biol 2008; 28: 2071-2077.

60 Hansson GK. Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 2001; 21: 1876-1890.

61 Bobryshev YV, Lord RS. Mapping of vascular dendritic cells in atherosclerotic arteries suggests their involvement in local immune-inflammatory reactions. Cardiovasc Res 1998; 37: 799-810.

62 Niessner A, Weyand CM. Dendritic cells in atherosclerotic disease. Clin Immunol 134: 25-32.

63 Dopheide JF, Sester U, Schlitt A, et al. Monocyte-derived dendritic cells of patients with coronary artery disease show an increased expression of costimulatory molecules CD40, CD80 and CD86 in vitro. Coron Artery Dis 2007; 18: 523-531.

64 Kim KD, Lim HY, Lee HG, et al. Apolipoprotein A-I induces IL-10 and PGE2 production in human monocytes and inhibits dendritic cell differentiation and maturation. Biochem Biophys Res Commun 2005; 338: 1126-1136.

65 Dykstra M, Cherukuri A, Sohn HW, et al. Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 2003; 21: 457-481.

66 Gupta N, DeFranco AL. Lipid rafts and B cell signaling. Semin Cell Dev Biol 2007; 18: 616-626.

67 Kabouridis PS, Jury EC. Lipid rafts and T-lymphocyte function: implications for autoimmunity. FEBS Lett 2008; 582: 3711-3718.

68 Pappu R, Schwab SR, Cornelissen I, et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 2007; 316: 295-298.

69 Mandala S, Hajdu R, Bergstrom J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 2002; 296: 346-349.

70 Liu G, Yang K, Burns S, et al. The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat Immunol 2010; 11: 1047-1056.

71 Scanu AM, Edelstein C. HDL: bridging past and present with a look at the future. Faseb J 2008; 22: 4044-4054.

72 Nofer JR, Bot M, Brodde M, et al. FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 2007; 115: 501-508.

73 Keul P, Tolle M, Lucke S, et al. The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2007; 27: 607-613.

74 Blom T, Back N, Mutka AL, et al. FTY720 stimulates 27-hydroxycholesterol production and confers atheroprotective effects in human primary macrophages. Circ Res 2010; 106: 720-729.

75 Ammirati E, Cianflone D, Banfi M, et al. Circulating CD4+ CD25hiCD127lo regulatory T-Cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30: 1832-1841.

76 Wilhelm AJ, Zabalawi M, Owen JS, et al. Apolipoprotein A-I modulates regulatory T cells in autoimmune LDLr-/-, ApoA-I-/-mice. J Biol Chem 2010; 285: 36158-36169.