doi:

DOI: 10.3724/SP.J.1238.2012.00455

Journal of Hunan Agrichltural University (湖南农业大学学报) 2012/38:5 PP.455-463

Exploitation and utilization of Miscanthus as energy plant


Abstract:
Miscanthus, as one of the most promising energy plant, has attracted considerable attention in the European and American countries in recent years. China is a distribution center of Miscanthus species and their germplasms are very abundant. Exploiting and utilizing these Miscanthus germplasms can promote the development of bioenergy industry in China. In this article, the classification, distribution and biological characteristics of Miscanthus were introduced; the advantages and the method for using Miscanthus as energy plant, and the related current research situation at home and abroad were reviewed; the prospect for the development of Miscanthus as energy crop in China was also indicated.

Key words:Miscanthus,energy plant,energy crop,biomass,biomass energy,germplasm

ReleaseDate:2014-07-24 09:26:31



[1] 石元春.发展生物质产业[J].发明与创新, 2005(5): 4-6.

[2] 谢光辉.能源植物分类及其转化利用[J].中国农业大学学报, 2011, 16(2): 1-7.

[3] Rowe R L, Street N R, Taylor G.Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK[J].Renewable & Sustainable Energy Reviews, 2009, 13: 260-279.

[4] Aylott M J.Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK[J].New Phytologist, 2008, 178: 358-370.

[5] Sang T, Zhu W.China’s bioenergy potential[J].Global Change Biology Bioenergy, 2011, 3: 79-90.

[6] Hastings A.Future energy potential of Miscanthus in Europe[J].Global Change Biology Bioenergy, 2009, 1: 180-196.

[7] Chen S L, Renvoize S A.Miscanthus Andersson[M]// Wu Z Y, Raven P H.Flora of China.Beijing: Science Press, 2006: 581-583.

[8] Heaton E A, Dohleman F G, Long S P.Meeting US biofuel goals with less land: The potential of Miscanthus[J].Global Change Biology, 2008, 14: 2000-2014.

[9] Clifton-Brown J C, Lewandowski I.Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply[J]. Annals of Botany, 2000, 86: 191-200.

[10] Pauly M, Keegstra K.Cell-wall carbohydrates and their modification as a resource for biofuels[J].The Plant Journal, 2008, 54: 559-568.

[11] Lewandowski I, Scurlock J M O, Lindvall E, et al. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe[J].Biomass Bioenerg, 2003, 25: 335-361.

[12] Himken M, Lammel J, Neukirchen D, et al. Cultivation of Miscanthus under West Europe conditions: Seasonals changes in dry matter production, nutrent uptake and remobilization[J].Plant and Soil, 1997, 189: 117-126.

[13] Farage P K, Blowers D, Long S P, et al. Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling tolerant C4 species, Cyperus longus L.and Miscanthus giganteus[J].Plant Cell and Environment, 2006, 29: 720-728.

[14] Wang D, Portis A R J, Moose S P, et al. Cool C4 photosynthesis: Pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus giganteus[J].Plant Physiology, 2008, 148: 557-567.

[15] Vanloocke A, Bernacchi C J, Twine T E.The impacts of Miscanthus giganteus production on the Midwest US hydrologic cycle[J].Global Change Biology Bioenergy, 2010, 2: 180-191.

[16] 朱明东, 蒋建雄, 肖亮, 等.基于形态性状及Adh1基因序列的芒与五节芒自然杂交现象研究[J].草业学报, 2012, 21(3): 132-137.

[17] 刘荣厚.生物质能工程[M].北京: 化学工业出版社, 2009: 244-270.

[18] 刘宝亮, 蒋剑春.生物质能源转化技术与应用----生物质发电技术和设备[J].生物质化学工程, 2008, 42(2): 55-60.

[19] 孙智谋, 蒋磊, 张俊波, 等.世界各国木质纤维原料生物转化乙醇的工业化进程[J].酿酒科技, 2007(1): 27-31.

[20] Ress B B, Calver P P, Pettigrew C A, et al. Testing anaerobic biodegradability of polymers in a laboratory- scale simulated landfill[J].Envion Sci Technol, 1998, 32: 821-827.

[21] 中国工业节能与清洁生产协会.中国节能减排产业发展报告[R].北京: 中国水利水电出版社, 2010: 123-152.

[22] Zhang L H, Xu C B, Champagne P.Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion and Management, 2010, 51: 969-982.

[23] Wang L J, Wellerb C L, Jones D D, et al. Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production[J].Biomass and Bioenergy, 2008, 32: 573-581. 

[24] Linde-Laursen I B.Cytogenetic analysis of Miscanthus giganteus, an interspecific hybrid[J].Hereditas, 1993, 119: 297-300.

[25] Hodkinson T R, Chase M W, Lledo M D, et al. Phylogenetics of Miscanthus, Saccharum, and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA plastid trnL intron and trnL-F intergenic spacers[J].The Journal of Plant Research, 2002, 115: 381-392.

[26] Lewandowski I, Clifton-Brown J C, Scurlock J M O, et al. Miscanthus: European experience with a novel energy crop[J].Biomass and Bioenergy, 2000, 19: 209- 227.

[27] Greef J M, Deuter M, Jung C, et al. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting[J].Genetic Resources and Crop Evolution, 1997, 44: 185-195.

[28] Hodkinson T R, Chase M W, Renvoize S A. Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR[J].Annals of Botany, 2002, 89: 627-636.

[29] Atienza S G, Satovic Z, Peterson K K, et al. Preliminary genetic linkage map of Miscanthus sinensis with RAPD[J].Theor Appl Genet, 2002, 105: 946-952.

[30] Atienza S G, Satovic Z, Peterson K K, et al. Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss[J].Euphytica, 2003, 132: 353-361.

[31] Atienza S G, Satovic Z, Peterson K K, et al. Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss II.Chlorine and potassium content[J]. Theor Appl Genet, 2003, 107: 857-863.

[32] Atienza S G, Satovic Z, Peterson K K, et al. Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss I.Total height, flag-leaf height and stem diameter[J].Theor Appl Genet, 2003, 107: 123-129.

[33] Holme I B, Krogstrup P, Hansen J.Embryogenic callus formation, growth and regeneration in callus and suspension cultures of Miscanthus ogiformis Honda “Giganteus” as affected by proline[J].Plant Cell, Tissue and Organ Culture, 1997, 50: 203-210.

[34] Petersen K K, Hansen J, Krogstrup P.Significance of different carbon sources and sterilization methods on callus induction and plant regeneration of Miscanthus ogiformis Honda “Giganteus” [J].Plant Cell, Tissue and Organ Culture, 1999, 58: 189-197.

[35] Petersen K K, Hagberg P, Kristiansen K.Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis[J].Plant Cell, Tissue and Organ Culture, 2003, 73: 137-146.

[36] Clifton-Brown J, Lewandiwski I, Andersson B, et al. Performance of 15 Miscanthus genotypes at five sites in Europe[J].Agron J, 2001, 93: 1013-1019.

[37] Himken M, Lammel J, Neukirchen D, et al. Cultivation of Miscanthus under West European conditions: Seasonal changes in dry matter production, nutrient uptake and remobilization[J].Plant and Soil, 1997, 189: 117-126.

[38] Eitzinger J, Kossler C.Microclimatological characteristics of a Miscanthus (Miscanthus cv.giganteus) stand during stable conditions at night in the nonvegetative winter period[J].Theor Appl Climatol, 2002, 72: 245-257.

[39] Clifton-Brown J, Stampfl P F, Jones M B.Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions[J]. Global Change Biology, 2004, 10: 509-518.

[40] Yoshida M, Liu Y, Uchida S, et al. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides[J]. Biosci Biotechnol Biochem, 2008, 72(3): 805-810.

[41] Michel R, Mischler N, Azambre B, et al. Miscanthus giganteus straw and pellets as sustainable fuels and raw material for activated carbon[J].Environ Chem Lett, 2006, 4: 185-189.

[42] Agbogbo F K, Wenger K S.Production of ethanol from corn stover hemicelluloses hydrolysate using Pichia stipitis[J].J Ind Microb Biotechnol, 2007, 34: 723-727.

[43] Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production[J].Science, 2006, 314: 1565-1568.

[44] Bajwa P K, Pinel D, Martin V J J, et al. Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling[J].J Microbiol Methods, 2010, 81: 179-186.

[45] Camassola M, Dillon A J P.Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum [J].Industrial Crops Products, 2009, 29: 642-647.

[46] 孙宝明.中国造纸植物原料志[M].北京: 轻工业出版社, 1959: 37-208.

[47] 张友德, 谢成章.荻的种子萌发试验[J].华中农业大学学报, 1980, 8(1): 79-81.

[48] 胡久清, 马辉华, 陈鹏飞.五个荻品种的茎秆形态结构及其纤维的比较观察[J].湖南农业大学学报: 自然科学版(原湖南农学院学报), 1989, 15(1): 23-29.

[49] 何凤仙, 谢成章.岗柴与刹柴(茅柴)的茎秆与纤维的比较解剖观察[J].武汉植物学研究, 1989, 7(3): 227-233.

[50] 杨春生, 杨丽红.胖节荻和突节荻纤维品质及农艺性状[J].中国造纸, 1994, 13(1): 76.

[51] 陈鹏飞, 张锡亭, 胡久清, 等.荻良种选育及品种资源研究[J].湘潭师范学院学报, 1989(3): 26-40.

[52] 朱邦长, 叶玛丽, 张川黔, 等.五节芒茎芽繁殖技术的研究[J].四川草原, 1995(1): 30-34.

[53] 何立珍, 周朴华, 刘选明.南荻不同外植体离体培养研究[J].西北植物学报, 1995, 15(4): 307-313.

[54] 萧运峰, 高洁.五节芒的分化类型及生产性状的比较研究[J].四川草原, 1998(1): 21-23.

[55] 何立珍, 周朴华, 刘选明.南荻同源四倍体的研究[J].遗传学报, 1997, 24(6): 544-549.

[56] 易自力, 周朴华, 储成才, 等.南荻遗传转化系统的建立及转基因植株的获得[J].高技术通讯, 2001(4): 20-24.

[57] 严良政, 张琳, 王士强, 等.中国能源作物生产生物乙醇的潜力及分布特点[J].农业工程学报, 2008, 24(5): 213-216.

[58] Ezaki B, Nagao E, Yamamoto Y, et al. Wild plants, Andropogon virginicus L.and Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminum, heavy metals and oxidative stresses[J].Plant Cell Reports, 2008, 27: 951-961.

[59] Clifton-Brown J C, Lewandowski I, Bangerth F, et al. Comparative responses to water stress in stay-green, rapid- and slow senescing genotypes of the biomass crop[J].Miscanthus New Phytologist, 2002, 154: 335-345.

[60] 宗俊勤, 陈静波, 聂东阳, 等.中国不同地区芒和荻种质资源抗盐性的初步评价[J].草地学报, 2011, 19: 803-807.

PDF