doi:

DOI: 10.3724/SP.J.1077.2010.00429

Journal of Inorganic Materials (无机材料学报) 2010/25:4 PP.429-434

Effects of WO3 Contents on the Thermal and Spectroscopic Properties of Tm3+-doped TeO2-WO3-La2O3 Glasses


Abstract:
Tungsten-lanthanum-tellurite (TWL) glasses with the molar composition (90-x)TeO2-xWO3-9La2O3-1Tm2O3(x=10, 20, 30(mol%)) were prepared. Effects of WO3 contents on the thermal stability and spectroscopic properties of Tm3+ doped TWL glasses were studied. It is found that the thermal stability of TWL glasses is improved with the increasing WO3 contents. For the glass with 30mol% WO3, the glass transition temperature(Tg) is 457℃, while onset crystallization temperature(Tx) is not observed in DTA curve, and the thermal expansion coefficient of the glass decreases to 1.224×10-5/℃ (30-300℃). The maximum phonon energy of the glasses shows the dependence on the host composition. The spectroscopic intensity parameters (Ωt t=2,4,6), radiative transition rates, radiative lifetimes, and branching ratios are calculated by Judd-Ofelt theory. The emission cross-section of Tm3+: 3F43H6 transition is calculated by McCu-mber theory. The maximum emission cross-section of Tm3+ in 60TeO2-30WO3-9La2O3-1Tm2O3 glass is 9.6×10-21cm2. Evaluated from the thermal and spectroscopic properties, 60TeO2-30WO3-10La2O3 glass is a promising host material for ~2.0μm laser.

Key words:tungsten-lanthanum-tellurite glass,Tm3+,thermal stability,spectroscopic properties

ReleaseDate:2014-07-21 15:16:13



[1] Sedlacek T, Martineff M A, Esterowitz L, et al. Reduction of acoustic transients generated in liquid media and in tissue by pulsed 2μm lasers. SPIE Laser-Tissue Interaction III, 1992, 1646: 302-306.

[2] Koch G J, Beyon J Y, Barnes B W, et al. High-energy 2μm Doppler lidar for wind measurements. Optical Engineering, 2007, 46(11): 116201-1-14.

[3] Renz G, Bohn W. A 2μm-pump laser based DIRCM system and aero-optics in the mid-IR. Proc. SPIE, 2007, 6738(67380B):1-12.

[4] Chandra S, Wager M, Clayton B, et al. 2-micron pumped 8-12 micron OPO source for remote chemical sensing. Proc. SPIE, 2000, 4036:200-208.

[5] Jackson S D. 8.8 W diode-cladding-pumped Tm3+,Ho3+-doped fluoride fibre laser.Electron. Lett., 2001, 37(13): 821-822.

[6] Jackson S D, Sabella A, Hemming A, et al. High-power 83W holmium-doped silica fiber laser operating with high beam quality. Opt. Lett., 2007, 32(3): 241-243.

[7] Tsang Y, Richards B, Binks D, et al. A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser.Opt. Express, 2008, 16(14):10690-10695.

[8] Tsang Y, Richards B, Binks D, et al. Tm3+/Ho3+ codoped tellurite fiber laser. Opt. Lett., 2008, 33(11):1282-1284.

[9] Richards B, Tsang Y, Binks D, et al. Efficient 2μm Tm3+-doped tellurite fiber laser. Opt.Lett., 2008, 33(4):402-404.

[10] Richards B, Shen S, Jha A, et al. Infrared emission and energy transfer in Tm3+,Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre. Opt. Express, 2007, 15(11):6546-6551.

[11] Wang J S, Vogel E M, Snitzer E, et al. Tellurite glass:a new candidate for fiber devices.Opt. Mater., 1994, 3(33):187-203.

[12] Fusari F, Lagatsky A A, Richards B, et al. Spectroscopic and lasing performance of Tm3+ doped bulk TZN and TZNG tellurite glasses operating around 1.9μm. Opt. Express, 2008, 16(23):19146-19151.

[13] Richards B, Tsang Y, Binks D, et al. ~2μm Tm3+/Yb3+-doped tellurite fibre laser.J Mater. Sci.: Mater. Electron., 2009, 20(1):317-320.

[14] Feng X, Qi C H, Lin F Y, et al. Tungsten-tellurite glass: a new candidate medium for Yb3+-doping. J.Non-Cryst.Solids,1999, 256-257:372-377.

[15] 干福熹. 光学玻璃(上册), 2版. 北京: 科学出版社, 1982: 203-206.

[16] Santos F E P dos, Fávero F C, Gomes A S L, et al. Evaluation of the third-order nonlinear optical properties of tellurite glasses by thermally managed eclipse Z-scan. J.Appl. Phys., 2009, 105(2): 4512-1-4.

[17] Sokolov V O, Plotnichenko V G, Koltashev V V, et al. On the structure of tungstate-tellurite glasses. J.Non-Cryst.Solids, 2006, 352(52/53/54): 5618-5632.

[18] 吴家禄, 张军杰, 赖杨琼,等(WU Jia-Lu, et al). TeO2-ZnC12-BaO-NaF玻璃系统的结构及中红外透过特性的研究. 无机材料学报(Journal of Inorganic Materials), 2007, 22(2): 277-282.

[19] Himei Y, Osaka A, Nanba T, et al. Coordination change of Te atoms in binary tellurite glasses. J.Non.Cryst.Solids, 1994, 177(11): 164-169.

[20] Judd B R. Optical absorption intensities of rare-earth ions. phys.Rev., 1962, 127(3):750-761.

[21] Ofelt G S. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys.,1962, 37(3): 511-520.

[22] Weber M J. Selective excitation and decay of Er3+ fluorescence in LaF3.Phys. Rev., 1967, 156(2): 231-241.

[23] Balda R, Lacha L M, Fernández J, et al. Spectroscopic properties of the 1.4μm emission of Tm3+ ions in TeO2-WO3-PbO glasses. Opt. Express, 2008, 16(16): 11836-11846.

[24] Kalaycioglu H, Cankaya H, Cizmeciyan M N, et al. Spectroscopic investigation of Tm3+:TeO2-WO3 glass. J. Luminescence, 2008, 128(9): 1501-1506.

[25] Ozen G, Aydunli A, Cenk S, et al. Effect of composition on the spontaneous emission probabilities, stimulated emission cross-sections and local environment of Tm3+ in TeO2-WO3 glass. J. Luminescence, 2003, 101(4): 293-306.

[26] Babu P, Seo H J, Jang K H, et al. Optical spectroscopy and energy transfer in Tm3+-doped metaphosphate laser glasses. J. Phys. Condens. Matter, 2005, 17(32): 4859-4876.

[27] Naftaly M, Shen S X, Jha A. Tm3+-doped tellurite glass for a broadband amplifier at 1.47μm. Appl. Opt., 2000, 39(27): 4979-4984.

[28] McCumber D E. Einstein relations connecting broadband emission and absorption spectra. Phys. Rev., 1964, 136(4A): 954-957.

[29] Doualan J L, Girard S, Haquin H, et al. Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8μm. Opt. Mater., 2003, 24(3): 563-574.

[30] Balda R, Lacha L M, Fernández J, et al. Optical spectroscopy of Tm3+ ions in GeO2-PbO-Nb2O5 glasses. Opt. Mater., 2005, 27(11):1771-1775.

[31] Kermaoui A, Pelle F. Synthesis and infrared spectroscopic properties of Tm3+-doped phosphate glasses. J. Alloys Compd., 2009, 469(1/2): 601-608.

[32] Wang M, Yi L X, Chen Y K, et al. Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2μm application. Mater. Chem. Phys., 2009, 114(1): 295-299.

[33] Weber M J, Ziegler D C, Angell C A. Tailoring stimulated emission cross sections of Nd3+ laser glass:Observation of large cross sections for BiCl3 glasses. J. Appl. Phys., 1982, 53(6): 4344-4350.