doi:

DOI: 10.3724/SP.J.1077.2012.00079

Journal of Inorganic Materials (无机材料学报) 2012/27:1 PP.79-82

Preparation and Characterization of Cu2ZnSnS4 Nanoparticles and Films


Abstract:
Cu2ZnSnS4 (CZTS) semiconductor is a promising materials for thin film solar cells. Cu2ZnSnS4(CZTS) nanoparticles were prepared via a hot-injection processing under high-purity N2 atmosphere, using Cu(acac)2, Zn(OAc)2, SnCl2•2H2O, sulfur powder as the precursors, oleylamine (OLA) as the solvent and the capping molecules. The CZTS thin films were deposited on glass substrates by drop-casting from the Sol of CZTS nanocrystals in toluene. The influence of reaction temperature on the phase structure and morphology of nanoparticles was studied. The samples were investigated by powder X-ray diffraction (XRD), Raman spectroscope, trans-mission electron microscope (TEM), scanning electron microscope (SEM) and UV-Vis-NIR spectroscope. The results indicated that the CZTS nanoparticles with 10 nm in size, good dispersion and an optical band gap of 1.5 eV was synthesized under the optimum reaction temperature of 260℃.

Key words:hot-injection,Cu2ZnSnS4,nanoparticles,thin film,solar cells

ReleaseDate:2014-07-21 16:05:06

Funds:Ministry of Science and Technology of China (2006DFA52910); Scientific & Technological Bureau of Ningbo (2008B10042, 2009B21007); K.C.Wong Magna Fund in Ningbo University



[1] Pagliaro M, Ciriminna R, Palmisano G. Flexible solar cells. Chem. Sus. Chem., 2008, 1(11): 880-891.

[2] Repins I, Contreras M A, Egaas B, et al. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl., 2008, 16(3): 235-239.

[3] Tanaka K, Moritake N, Uchiki H. Preparation of Cu2ZnSnS4 thin films by sul-furizing Sol-Gel deposited precursors. Solar Energy Materials & Solar Cells, 2007, 91(13): 1199-1201.

[4] Todorov T K, Reuter K B, Mitzi D B. High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater., 2010, 22(20): E156-E159.

[5] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys., 1961, 32(3): 510-519.

[6] Katagiri H. Cu2ZnSnS4 thin film solar cells. Thin Solid Films, 2005, 480-481: 426-432.

[7] Bhattacharya R N, Batchelor W, Hiltner J F, et al. Thin-film CuIn1-xGaxSe2 photovoltaic cells from solution-based precursor layers. Appl. Phys. Lett., 1999, 75(10): 1431-1437.

[8] Mitzi D B, Yuan M, Liu W, et al. A high-efficiency solution-deposited thin-film photovoltaic device. Adv. Mater., 2008, 20(19): 3657-3662.

[9] Ennaoui A, Lux-Steiner M, Weber A, et al. Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films, 2009, 517(7): 2511-2514.

[10] Gur I, Fromer N A, Geier M L, et al. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 2005, 310(5747): 462-465.

[11] Luther J M, Law M, Beard M C, et al. Schottky solar cells based on colloidal nanocrystal films. Nano. Lett., 2008, 8(10): 3488-3492.

[12] Guo Q, Ford G M, Hillhouse H W, et al. Sulfide nanocrystal inks for dense Cu(In1-xGax)(S1-ySey)2 absorber films and their photovoltaic performance. Nano Lett., 2009, 9(8): 3060-3065.

[13] Liu C Y, Holman Z C, Kortshagen U R. Hybrid solar cells from P3HT and silicon nanocrystals. Nano Lett., 2009, 9(1): 449-452.

[14] Guo Q, Ford G M, Yang W C, et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc., 2010, 132(49): 17384-17386.

[15] Lu X T, Zhuang Z B, Peng Q, et al. Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. Chem. Commun., 2011, 47(11): 3141-3143.

[16] Fernandes P A, Salomé P M P, da Cunha A F. Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films, 2009, 517(7): 2519-2523.

[17] Cheng Y C, Jin C Q, Gao F, et al. Raman scattering study of zinc blende and wurtzite ZnS. J. Appl. Phys., 2009, 106(12): 123505-123509.

[18] Fernandes P A, Salomé P M P, da Cunha A F. A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J. Phys. D: Appl. Phys., 2010, 43(21): 215403-215413.