DOI: 10.3724/SP.J.1077.2012.11514

Journal of Inorganic Materials (无机材料学报) 2012/27:7 PP.764-768

Grinding Characteristics of Reaction Bonded Silicon Carbide

Surface topography, surface residual stress and bending strength of RBSiC ground using diamond wheel were studied. Grinding RBSiC is removed mainly by brittle fracture and lightly by ductile cutting. With the increase of down feed, surface roughness Ra increases. Burnishing with no down feed can improve the Ra in some way. With increasing down feed, the compressive residual stress decreases be-cause of an inadequately cooling effect. Compare with the specimens grounded using 0.9 μm/s, those using down feed of 1.35 μm/s have worse surface quality. Considering both the processing efficiency and the surface quality, the optimum parameters are as follow: 0.9 mm/s down feed, 2.1 r/min work table rotational speed and 1 min bur-nishing.

Key words:SiC,grinding,residual stress,crack,bending strength

ReleaseDate:2014-07-21 16:17:51

Funds:Natural Science Foundation of Shandong Province (ZR2010EQ032)

[1] Goela J S, Desai H D, Taylor R L, et al. Thermal stability of CVDSiC lightweight optics. SPIE, 1995, 2543: 38-48.

[2] 郝寅雷, 赵文兴, 翁志成. 新型反射镜材料——碳化硅. 宇航材料工艺, 2001(4): 11-14.

[3] 张玉娣, 张长瑞, 周新贵, 等. SiC基陶瓷卫星反射镜研究进展. 材料导报, 2002, 16(9): 37-40.

[4] Kaneda H. Optical performance of the ASTRO-F telescope at cryogenic temperatures. SPIE, 2003, 4850: 230-241.

[5] Katsuhiko T, Hiroshi I, Kazuhiko O, et al. New-Technology Sili-con carbide (NT-SiC): demonstration of new material for large lightweight optical mirror. SPIE, 2005(5659): 138-146.

[6] Inasaki I. Grinding of hard and brittle materials. Annals of the CIRP, 1987, 36(2): 463-471.

[7] 黄清伟, 高积强, 金志浩. 反应烧结碳化硅材料研究进展. 兵器材料科学与工程, 1999, 22(1): 49-53.

[8] 邓广敏, 陈锡让, 于思远, 等. 工程陶瓷精密研磨技术. 天津大学学报, 1996, 29(1): 94-95.

[9] Genzel Ch, Klaus M, Denks I, et al. Residual stress field in surface treated silicon carbide for space industry-comparison of biaxial and triaxial analysis using different X-Ray methods. Material Science and Engineering A, 2005, 390(1/2): 376-384.

[10] Shih A J, Lee N L. Precision cylindrical face grinding. Precision Engineering, 1999, 23(3): 177-184.

[11] 朱洪涛, 林 滨, 吴 辉, 等. 陶瓷磨削机理及其对表面/亚表面损伤的影响. 精密制造与自动化, 2004(2): 15-18.

[12] 邓朝晖, 张 璧, 孙宗禹, 等. 陶瓷磨削材料去除机理的研究进展. 中国机械工程, 2002, 13(18): 22-47.

[13] Xu H H K , Jahanmir S. Simple technique for observing subsurface damage In machining of ceramics. Journal of The American Ceramic Society, 1994, 77(5): 1388-1390.

[14] 田业冰. 硅片超精密磨削表面质量和材料去除率的研究. 大连: 大连理工大学硕士论文, 2005.

[15] Zhang B, Zheng X L, Tokura H, et al. Grinding induced damage in ceramics. J. Mat. Pro. Tec., 2003, 132(1/2/3): 353-364.

[16] Mahdi M, Zhang L C. Applied mechanics in grinding-V. thermal residual stresses. Int. J. Mach. Tool. Manufact, 1997, 37(5): 619-633.

[17] Eigenmann B, Macherrauch E. Determination of inhomogeneous residual stress states in surface layers of machined engineering ceramics by synchrotron X-rays. Nuclear Instruments and Meth-ods in Physics Research B, 1995, 97(1-4): 92-97.

[18] Li K, Liao T W. Surface/subsurface damage and the fracture strength of ground ceramics. Journal of Materials Processing Technology, 1996, 57(3/4): 207-220.

[19] Yang H T, Gao L. Yuan R Z, et al. Effect of residual stress on the bending Strength of ground Al2O3/TiCN Ceramics. Materials Chemistry and Physics, 2003, 80(1): 305-308.

[20] Pfeiffer W, Hollstein T. Influence of grinding parameters on strength-dominating near-surface characteristics of silicon nitride ceramics. Journal of the European Ceramics Society, 1997, 17(2/3): 487-494.

[21] Hessert R, Eigenmann B, Vohringer O, et al. Fracture mechanical evaluation of the effects of grinding residual stresses on bending strength of ceramics. Material Science and Engineering A, 1997, 234-236: 1126-1129.

[22] Immelmann S, Welle E, Reimers W. X-ray residual stress analysis on machined and tempered HPSN-ceramics. Material Science and Engineering A, 1997, 238(2): 287-292.

[23] Roberts S G, Lawrence C W, Bisrat Y. Determination of surface residual stresses in brittle materials by hertzian indentation: theory and experiment. J. Am. Ceram. Soc., 1999, 82(7): 1809-1816.