doi:

DOI: 10.3724/SP.J.1077.2013.12309

Journal of Inorganic Materials (无机材料学报) 2013/28:4 PP.425-430

Preparation and Optical Storage Properties of λ­Ti3O5 Powder


Abstract:
The Ti3O5 powder was prepared by reducing TiO2 nanopartical in H2 atmosphere. The samples were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), scanning electron microscope (SEM) and UV-Vis diffusion reflectance spectra (UV-Vis). The results show that, single phase Ti3O5 can be obtained by increasing the H2 flow. When H2 flow increases from 0.3 mL/min to 0.8 mL/min, the single phase λ-Ti3O5 can be synthesized using SiO2-coated TiO2 (rutile, nanoparticle) as raw material at 1150℃ for 1 h. While using nano-TiO2 powders without SiO2-coated as raw material, the reduction product is multiphases composed of λ-Ti3O5 and β-Ti3O5. There is a high reflectivity contrast between λ-Ti3O5 and β-Ti3O5. When the multiphases sample is irradiated with 532 nm 20 ns-pulsed laser light at room temperature, Ti3O5 will transit from α phase to β phase, which shows a good optical storage performance.

Key words:λ-Ti3O5,powder,reduction,nano-TiO2,optical storage

ReleaseDate:2014-07-21 16:41:22

Funds:Open Foundation of Laboratory for Extreme Conditions Matter Properties (11zxjk01)



[1] 赵书文, 王淑荣, 张凤兰, 等. Ti3O5反应蒸发镀制TiO2光学膜的材料. 激光与红外, 1985(12): 23-28.

[2] Park S Y, Mho S Y, Chi E O, et al. Characteristics of Pt thin films on the conducting ceramics TiO and Ebonex (Ti4O7) as electrode materials. Thin Solid Films, 1995, 258(1/2): 5-9.

[3] Przyluski J, Kolbrecka K. Voltametric behaviour of TinO2n−1 ceramic electrodes close to the hydrogen evolution reaction. Journal of Applied Electrochemistry, 1993, 23(10): 1063-1068.

[4] Zheng Liaoying, Li Guorong, Xu Tingxian, et al. Preparation and oxygen-sensing properties of α-Ti3O5 thin film. Journal of Inorganic Materials, 2002, 17(6): 1253-1257.

[5] Masashige Onoda. Phase transitions of Ti3O5. Journal of Solid State Chem, 1998, 136(1): 67-73.

[6] Åsbrink S, Magnéli A. Crystal structure studies on trititanium pen-toxide, Ti3O5. Acta Cryst., 1959, 12(8): 575-581.

[7] HONG S H, SBRINKS A. The structure of γ-Ti3O5 at 297 K. Acta Cryst., 1982, 38(10): 2570-2576.

[8] Ohkoshi Shin-ichi, Tsunobuchi Yoshihide, Matsuda Tomoyuki, et al. Synthesis of a metal oxide with a roomtemperature photoreversible phase transition. Nature Chemistry, 2010, 2(7): 539-545.

[9] Fang Ming, Li Qinghui, Gu Donghong, et al. Research and devel-opment of inorganic materials used as blue-laser optical recording media. Progress In Physics, 2003, 23(4): 423-430.

[10] 梁英教, 车荫昌. 无机物热力学数据手册. 沈阳: 东北大学出版社, 1994.

[11] Zhang Qinghong, Gao Lian, Sun Jian. Retarding effect of silica on the growth and anatase-to-rutile transformation of TiO2 nanocrys-tals. Journal of Inorganic Materials, 2002, 17(3): 415-421.

[12] Makiura R, Takabayashi Y, Fitch AN, et al. Nanoscale effects on the stability of the λ-Ti3O5 polymorph. Chem. Asian J., 2011, 6(7): 1886-1890.

[13] 干福熹. 数字光盘和光存储材料. 上海: 上海科学技术出版社, 1992.