doi:

DOI: 10.3724/SP.J.1077.2014.13507

Journal of Inorganic Materials (无机材料学报) 2014/29:7 PP.673-680

Research Progress on Oxide/Oxide Ceramic Matrix Composites


Abstract:
Oxide/Oxide ceramic matrix composites (CMCs) possess great potential in combustion environments of gas turbines, such as combustion chamber, scramjet nozzle and so on for their favorable performances (high strength and modulus, excellent oxidation resistive properties, etc.). In this paper, reinforced fibers and ceramic matrices for Oxide/Oxide CMCs are summarized, and it is pointed out that both single crystal oxide fibers and mullite ceramic matrix have great application potential. The improvement approaches of their mechanical properties, interphases and porous matrix, are reviewed based on the adjustment of the fiber/matrix bonding. The key problems, notch sensitivity, creep tolerance and ablation resistence, which limit their applications, are analyzed, and their future development is prospected.

Key words:oxide,composites,interphases,porous matrix,properties,review

ReleaseDate:2016-07-11 11:25:00



[1] MA QING-SONG, LIU HAI-TAO, PAN YU, et al. Research progress on the application of C/SiC composites in scramjet. Journal of Inorganic Materials, 2013, 28(3): 247-255.

[2] NASLAIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Composites Science and Technology, 2004, 64(2): 155-170.

[3] NASLAIN R, GUETTE A, REBILLAT F, et al. Oxidation mechanisms and kinetics of SiC-matrix composites and their constituents. Journal of Materials Science, 2004, 39(24): 7303-7316.

[4] MEDVEDOVSKI E. Alumina-mullite ceramics for structural applications. Ceramics International, 2006, 32(4): 369-375.

[5] SCHNEIDER H, SCHREUER J, HILDMANN B. Structure and properties of mullite-a review. Journal of the European Ceramic Society, 2008, 28(2): 329-344.

[6] HOLMQUIST M G, LANGE F F. Processing and properties of a porous oxide matrix composite reinforced with continuous oxide fibers. Journal of the American Ceramic Society, 2003, 86(10): 1733-1740.

[7] KANKA B, SCHNEIDER H. Aluminosilicate fiber/mullite matrix composites with favorable high-temperature properties. Journal of the European Ceramic Society, 2000, 20(5): 619-623.

[8] CARELLI E A V, FUJITA H, YANG J Y, et al. Effects of thermal aging on the mechanical properties of a porous-matrix ceramic composite. Journal of the American Ceramic Society, 2002, 85(3): 595-602.

[9] KRENKEL W (Eds.). Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008: 205-229.

[10] JURF R A, BUTNER S C. Advances in all-oxide CMC. Journal of Engineering for Gas Turbines and Power, 2000, 122(2): 202-205.

[11] RUGGLES-WRENN M B, MUSIL S S, MALL S, et al. Creep behavior of NextelTM610/monazite/alumina composite at elevated temperatures. Composites Science and Technology, 2006, 66(13): 2089-2099.

[12] CHEN Z F, ZHU X R, LIU Z L, et al. Microstructure and mullitization of aluminosilicate matrix in Nextel 720/aluminosilicate composites prepared by LPCVI at 550℃. Ceramics International, 2006, 32(6): 687-690.

[13] WANG Y, CHENG H F, LIU H T, et al. Effects of sintering temperature on mechanical properties of 3D mullite fiber (ALF FB3) reinforced mullite composites. Ceramics International, 2013, 39(8): 9229-9235.

[14] 3M Nextel? Ceramic Textiles Technical Notebook. 3M Center, 2004.

[15] SCHNEIDER H, KOMARNENI S (EDS.). Mullite. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005: 141-156.

[16] CHAWLA K K. Interface Engineering in Oxide Fiber/Oxide Matrix Composites. Contract No. N0014-89-J1459, annual report for the period 1992 to 1993.

[17] KAUFMANN H, MORTENSEN A. Wetting of Saffil alumina fiber preforms by aluminum at 973 K. Metallurgical Transactions A, 1992, 23A(7): 2071-2073.

[18] SCHMüCKER M, FLUCHT F, MECHNICH P. Degradation of oxide fibers by thermal overload and environmental effects. Materials Science and Engineering A, 2012, 557(15): 10-16.

[19] WANG Y, CHENG H F, LIU H T, et al. Microstructure and room temperature mechanical properties of mullite fibers afterheat-treatment at elevated temperatures. Materials Science and Engineering A, 2013, 578(20): 287-293.

[20] DASSIOS K G, STEEN M, FILIOU C. Mechanical properties of alumina NextelTM 720 fibres at room and elevated temperatures: tensile bundle testing. Materials Science and Engineering A, 2003, 349(1/2): 63-72.

[21] SCHMüCKER M, SCHNEIDER H, MAUER T, et al. Kinetics of mullite grain growth in alumino silicate fibers. Journal of the American Ceramic Society, 2005, 88(2): 488-490.

[22] DELéGLISE F, BERGER M H, JEULIN D, et al. Microstructural stability and room temperature mechanical properties of the Nextel 720 fibre. Journal of the European Ceramic Society, 2001, 21(5): 569-580.

[23] TOWATA A, HWANG H J, YASUOKA M, et al. Fabrication of fine YAG-particulate-dispersed alumina fiber. Journal of the American Ceramic Society, 1998, 81(9): 2469-2472.

[24] TOWATA A, HWANG H J, YASUOKA M, et al. Preparation of polycrystalline YAG/alumina composite fibers and YAG fiber by Sol-Gel method. Composites Part A, 2001, 32(8): 1127-1131.

[25] QUISPE-CANCAPA J J, DE ARELLANO-LóPEZ A R, Martínez-Fernández J. Tensile strength of directionally solidified chromia-doped sapphire. Journal of the European Ceramic Society, 2005, 25(8): 1259-1268.

[26] CLAUSS B, GRüB A, OPPERMANN W. Continuous yttria-stabilized zirconia fibers. Advanced Materials, 1996, 8(2): 142-146.

[27] MARSHALL D B, LANGE F F, MORGAN P D. High-strength zirconia fibers. Journal of the American Ceramic Society, 1987, 70(8): C-187-C-188.

[28] EL-BUAISHI N M, JANKOVIC-CASTVAN I, JOKIC B, et al. Crystallization behavior and sintering of cordierite synthesized by an aqueous Sol-Gel route. Ceramics International, 2012, 38(3): 1835-1841.

[29] OCHIAI S, UEDA T, SATO K, et al. Deformation and fracture behavior of an Al2O3/YAG composite from room temperature to 2023 K. Composites Science and Technology, 2001, 61(14): 2117-2128.

[30] ARVIND A, KUMAR R, DEO M N, et al. Preparation, structural and thermo-mechanical properties of lithium aluminum silicate glass-ceramics. Ceramics International, 2009, 35(4): 1661-1666.

[31] EICHLER K, SOLOW G, OTSCHIK P, et al. BAS (BaO?Al2O3?SiO2)-glasses for high temperature applications. Journal of the European Ceramic Society, 1999, 19(6/7): 1101-1104.

[32] MA W M, WEN L, GUAN R G, et al. Sintering densification, microstructure and transformation behavior of Al2O3/ZrO2(Y2O3) composites. Materials Science and Engineering A, 2008, 477(1/2): 100-106.

[33] JIMéNEZ-MELENDO M, HANEDA H, NOZAWA H. Ytterbium cation diffusion in yttrium aluminum garnet (YAG)-implications for creep mechanisms. Journal of the American Ceramic Society, 2001, 84(10): 2356-2360.

[34] MARTIN E, PETERS P W M, LEGUILLON D, et al. Conditions for matrix crack deflection at an interface in ceramic matrix composites. Materials Science and Engineering A, 1998, 250(2): 291-302.

[35] NASLAIN R. The design of the fibre-matrix interfacial zone in ceramic matrix composites. Composites Part A, 1998, 29(9/10): 1145-1155.

[36] ZOK F W. Developments in oxide fiber composites. Journal of the American Ceramic Society, 2006, 89(11): 3309-3324.

[37] KUO D H, KRIVEN W M, MACKIN T J. Control of interfacial properties through fiber coatings: monazite coatings in oxide-oxide composites. Journal of the American Ceramic Society, 1997, 80(12): 2987-2996.

[38] CINIBULK M K. Hexaluminates as a cleavable fiber-matrix interphase: synthesis, texture development, and phase compatibility. Journal of the European Ceramic Society, 2000, 20(5): 569-582.

[39] CHAWLA K K. Interface engineering in mullite fiber/mullite matrix composites. Journal of the European Ceramic Society, 2008, 28(2): 447-453.

[40] BAO Y H, NICHOLSON P S. AlPO4-coated mullite/alumina fiber reinforced reaction-bonded mullite composites. Journal of the European Ceramic Society, 2008, 28(16): 3041-3048.

[41] DAVIS J B, MARSHALL D B, MORGAN P E D. Monazite-containing oxide/oxide composites. Journal of the European Ceramic Society, 2000, 20(5): 583-587.

[42] CHAWLA K K, LIU H, JANCZAK-RUSCHC J, et al. Microstructure and properties of monazite (LaPO4) coated saphikon fiber/alumina matrix composites. Journal of the European Ceramic Society, 2000, 20(5): 551-559.

[43] REIG P, DEMAZEAU G, NASLAIN R. KMg2AlSi4O12 phyllosiloxide as a potential interphase material for ceramic-matrix composites. Journal of Materials Science, 1997, 32(16): 4195-4200.

[44] CHEN Z C, TAMACHI T, KULKARNI R, et al. Interfacial reaction behavior and thermal stability of barium zirconate-coated alumina fiber/alumina matrix composites. Journal of the European Ceramic Society, 2008, 28(6): 1149-1160.

[45] BERTRAND S, DROILLARD C, PAILLER R, et al. TEM structure of (PyC/SiC)n multilayered interphases in SiC/SiC composites. Journal of the European Ceramic Society, 2000, 20(1): 1-13.

[46] YU H J, ZHOU X G, ZHANG W, et al. Mechanical properties of 3D KD-I SiCf/SiC composites with engineered fibre-matrix interfaces. Composites Science and Technology, 2011, 71(5): 699-704.

[47] BHATT R T, CHEN Y L, MORSCHER G N. Microstructure and tensile properties of BN/SiC coated Hi-Nicalon, and Sylramic SiC fiber preforms. Journal of Materials Science, 2002, 37(18): 3991-3998.

[48] SCHMüCKER M, SCHNEIDER H, CHAWLA K K. Thermal degradation of fiber coatings in mullite-fiber-reinforced mullite composites. Journal of the American Ceramic Society, 1997, 80(8): 2136-2140.

[49] CINIBULK M K, PARTHASARATHY T A, KELLER K A, et al. Porous yttrium aluminum garnet fiber coatings for oxide composites. Journal of the American Ceramic Society, 2002, 85(11): 2703-2710.

[50] KERANS R J, HAY R S, PARTHASARATHY T A, et al. Interface design for oxidation-resistant ceramic composites. Journal of the American Ceramic Society, 2002, 85(11): 2599-2632.

[51] CHAWLA K K, XU Z R, HA J S. Processing, structure, and properties of mullite fiber/mullite matrix composites. Journal of the European Ceramic Society, 1996, 16(2): 293-299.

[52] KAYA C, KAYA F, BUTLER E G, et al. Development and characterisation of high-density oxide fibre-reinforced oxide ceramic matrix composites with improved mechanical properties. Journal of the European Ceramic Society, 2009, 29(9): 1631-1639.

[53] KELLER K A, MAH T, PARTHASARATHY T A, et al. Fugitive interfacial carbon coatings for oxide/oxide composites. Journal of the American Ceramic Society, 2000, 83(2): 329-336.

[54] BOCCACCINI A R, KAYA C, CHAWLA K K. Use of electrophoretic deposition in the processing of fibre reinforced ceramic and glass matrix composites: a review. Composites Part A, 2001, 32(8): 997-1006.

[55] STOLL E, MAHR P, KRüGER H G, et al. Progress in the characterisation of structural oxide/oxide ceramic matrix composites fabricated by electrophoretic deposition (EPD). Advanced Engineering Materials, 2006, 8(4): 282-285.

[56] GOUSHEGIR S M, GUGLIELMI P O, SILVA J G P D, et al. Fiber-matrix compatibility in an all-oxide ceramic composite with RBAO matrix. Journal of the American Ceramic Society, 2012, 95(1): 159-164.

[57] SCHMüCKER M, MECHNICH P. Improving the microstructural stability of NextelTM 610 alumina fibers embedded in a porous alumina matrix. Journal of the American Ceramic Society, 2010, 93(7): 1888-1890.

[58] CARELLI E V A, FUJITA H, YANG J Y, et al. Effects of thermal aging on the mechanical properties of a porous-matrix ceramic composite. Journal of the American Ceramic Society, 2002, 85(3): 595-602.

[59] ZOK F W, LEVI C G. Mechanical properties of porous-matrix ceramic composites. Advanced Engineering Materials, 2001, 3(1/2): 15-23.

[60] SIMON R A. Progress in processing and performance of porous-matrix oxide/oxide composites. International Journal of Applied Ceramic Technology, 2005, 2(2): 141-149.

[61] ANTTI M L, CURZIO E L, WARREN R. Thermal degradation of an oxide fibre (Nextel 720)/aluminosilicates composite. Journal of the European Ceramic Society, 2004, 24(3): 565-578.

[62] KRAMB V A, JOHN R, ZAWADA L P. Notched fracture behavior of an oxide/oxide ceramic-matrix composite. Journal of the American Ceramic Society, 1999, 82(11): 3087-3096.

[63] RUGGLES-WRENN M B, MALL S, EBER C A, et al. Effects of steam environment on high-temperature mechanical behavior of NextelTM 720/alumina (N720/A) continuous fiber ceramic composite. Composites Part A, 2006, 37(11): 2029-2040.

[64] RUGGLES-WRENN M B, BRAUN J C. Effects of steam environment on creep behavior of NextelTM 720/alumina ceramic composite at elevated temperature. Materials Science and Engineering A, 2008, 497(1/2): 101-110.

[65] RUGGLES-WRENN M B, LAFFEY P D. Creep behavior in interlaminar shear of NextelTM 720/alumina ceramic composite at elevated temperature in air and in steam. Composites Science and Technology, 2008, 68(10/11): 2260-2266.

[66] RUGGLES-WRENN M B, KOUTSOUKOS P, BAEK S S. Effects of environment on creep behavior of two oxide/oxide ceramic-matrix composites at 1200℃. Journal of Materials Science, 2008, 43(20): 6734-6746.

[67] RUGGLES-WRENN M B, GENELIN C L. Creep of NextelTM 720/alumina-mullite ceramic composite at 1200℃ in air, argon, and steam. Composites Science and Technology, 2009, 69(5): 663-669.

[68] MATTONI M A, YANG J Y, LEVI C G, et al. Effects of combustor rig exposure on a porous-matrix oxide composite. International Journal of Applied Ceramic Technology, 2005, 2(2): 133-140.

[69] OPILA E J, MYERS D L. Alumina volatility in water vapor at elevated temperatures. Journal of the American Ceramic Society, 2004, 87(9): 1701-1705.

[70] CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society, 2004, 24(1): 1-10.

[71] HUA JIA-JIE, ZHANG LI-PENG, LIU ZI-WEI. Progress of research on the failure mechanism of thermal barrier coatings. Journal of Inorganic Materials, 2012, 27(7): 680-686.

[72] MECHNICH P, BRAUE W. Air plasma-sprayed Y2O3 coatings for Al2O3/Al2O3 ceramic matrix composites. Journal of the European Ceramic Society, 2013, 33(13/14): 2645-2653.