DOI: 10.3724/SP.J.1077.2014.13549

Journal of Inorganic Materials (无机材料学报) 2014/29:7 PP.729-734

Influence of Deposition and in situ Annealing Time on Composition and Optical Band Gap of h-BN Films Deposited by PECVD

Series of h-BN films were grown by RF plasma enhanced chemical vapor deposition (PECVD) technique using high purity nitrogen and diborane as the precursor gases. The optimized experimental conditions for preparing h-BN films were explored. Based on these explorations, influences of deposition time and in situ annealing time on the composition and optical band gap of the films were investigated. All specimens were characterized by Fourier transform infrared spectroscope, utraviolet-visible spectrophotometer and field emission scanning electron microscope. The results show that the deposition time has a significant impact on the quality and optical band gap of the samples, and the optical band gap exhibits an exponential relation with the varied thickness of the films. Moreover, in situ annealing at 700℃ can affect the crystal quality, but almost not the phase and optical band gap of the h-BN films.

Key words:h-BN films,deposition time,annealing time,optical band gap

ReleaseDate:2016-07-11 11:25:03

[1] YU W J, LAU W M, CHAN S P, et al. Ab initio study of phase transformations in boron nitride. Phys. Rev. B, 2003, 67(1): 0141081-19.

[2] KING S W, FRENCH M, BIELEFELD I, et al. X-ray photoelectron spectroscopy investigation of the Schottky barrier at a-BN:H/Cu interfaces. Electrochem. Solid-State. Lett., 2011, 14(12): H478-H479.

[3] WILLIAMS D. Elastic stiffness and thermal expansion coefficient of boron nitride films. J. Appl. Phys., 1985, 57(6): 2340-2342.

[4] MOOHAMMAD S N. Electrical characteristics of thin film cubic boron nitride. Solid-State Electron., 2002, 46(2): 203-222.

[5] KIAN P L, MIKKA N G, ISAO S. Thermal stability of the negative electron af?nity condition on cubic boron nitride. Appl. Phys. Lett., 1998, 72(23): 3023-3025.

[6] WATANABE K, TANIGUCHI T, KANDA H, et al. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater., 2004, 3(6): 404-409.

[7] GANNETT W, REGAN W, WATANABE K, et al. Boron nitride substrates for high mobility chemical vapor deposited graphene. Appl. Phys. Lett., 2011, 98(24): 242105-1-3.

[8] MISHIMA O, ERA K, TANAKA J, et al. Uitravioiet light-emitting diode of a cubic boron nitride pn junction made at high pressure. Appl. Phys. Lett., 1988, 53(11): 962-964.

[9] SCHüTZE A, BEWILOGUA K, LüTHJE H, et al. Cubic nitride films prepared by reactive r.f. and d.c. sputtering from different boron containing targets. Surf. Coat. Technol., 1995, 74-75(2): 717-722.

[10] ISHIHARA R, SUGIURA O, MATSUMURA M. Low-temperature chemical vapor deposition of boron-nitride films using hydrogen azide. Appl. Phys. Lett., 1992, 60(26): 3244-3246.

[11] YADOUNI A E, SOLTANI A, BOUDRIOUA A, et al. Investigation of the optical and electro-optical peoperties of hexagonal boron nitride thin films deposited by PECVD technique. Opt. Mater., 2001, 17(1/2): 319-322.

[12] MIRKARIMI P B, MEDLIN D L, MCCARTY K F, et al. Growth of cubic BN ?lms on b-SiC by ion-assisted pulsed laser deposition. Appl. Phys. Lett., 1995, 66(21): 2813-2815.

[13] WEISSMANTEL C. Hard coatings of carbon, boron nitride, and composites based on these materials. J. Vac. Sci. Technol. A, 1985, 3(6): 2384-2385.

[14] HYDER S B, YEP T O. Structure and properties of boron nitride films grown by high temperature reactive plasma deposition. J. Electrochem. Soc., 1976, 123(11): 1721-1724.

[15] CHOLET V, VANDENBULCHE L, ROUAN J P, et al. Characterization of boron nitride films deposited from BCl3-NH3-H2 mixtures in chemical vapour infiltration conditions. J. Mater. Sci., 1994, 29(6): 1417-1435.

[16] CI L J, SONG L, JIN C H, et al. Atomic layers of hybridized boron nitride and grapheme domains. Nat. Mater., 2010, 9(5): 430-435.

[17] FRIEDMANN T, MIRKARIMI P, MEDLIN D, et al. Ion-assisted pulsed laser deposition of cubic boron nitride films. J. Appl. Phys., 1994, 76(5): 3088-3101.

[18] COSTA J, BERTRAN E, ANDúJAR J L. Production of boron nitride nanometric powder by plasma-enhanced chemical vapor deposition: microstructural characterization. Diamond Relat. Mater., 1996, 5(3-5): 544-547.

[19] NEMANICH R J, SOLIN S A, MARTIN R M. Light scattering study of boron nitride microcrystals. Phys. Rev. B, 1981, 23(12): 6348-6356.

[20] CARRENO M N P, BOTTECCHIA J P, PEREYRA I. Low temperature plasma enhanced chemical vapour deposition boron nitride. Thin Solid Films, 1997, 308-309: 219-222.

[21] ZHANG X W, ZOU Y J, WANG B. Optical band gap and refractive index of c-BN thin films synthesized by radio frequency bias sputtering. J. Mater. Sci., 2001, 36(8): 1957-1961.

[22] HOFFMAN D M, DOLL G L, EKLUND P C. Optical properties of pyrolytic boron nitride in the energy range 0.05-10 eV. Phys. Rev. B, 1981, 30(10): 6051-6056.