doi:

DOI: 10.3724/SP.J.1077.2014.13508

Journal of Inorganic Materials (无机材料学报) 2014/29:7 PP.741-746

Preparation and Photocatalytic Properties of BaTiO3/TiO2 Heterostructured Nanofibers


Abstract:
Heterostructured BaTiO3/TiO2 composite nanofibers were fabricated by in situ hydrothermal method using TiO2 nanofibers as both template and reactant. The morphology and structure of BaTiO3/TiO2 composite nanofibers were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM). Photocatalytic activity was tested via rhodamine B and phenol degradation as the model reaction. The results showed that the as-fabricated sample was composed of BaTiO3 nanoparticles assembling uniformly on the surface of TiO2 nanofibers to form BaTiO3/TiO2 heterostructures. Compared with the pure TiO2 nanofibers, BaTiO3/TiO2 composite nanofibers exhibited enhanced photocatalytic activity in the decomposition of rhodamine B under UV illumination. The degradation of both RB and phenol followed first-order reaction kinetics, and the composite showed higher photoactivity than did the pure anatase TiO2.The composite nanofibers also showed good catalytic stability and the decolorizing efficiency of RB solution remained as high as 96% after 5 times recycle. Moreover, the catalyst was easily separated and removed from the system after reaction and reuse.

Key words:electrospinning technique,hydrothermal synthesis,BaTiO3/TiO2 composite nanofibers,photocatalytic degradation

ReleaseDate:2016-07-11 11:25:03



[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37-38.

[2] CAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCBs in the presence of titanium dioxide in aqueous suspension. Bull Environ Contam Toxicol, 1976, 16(6): 697-701.

[3] ZHOU WEN-QIAN, LU YU-MING, CHEN CHANG-ZHAO, et al. Effect of Li-doped TiO2 compact layers for dye sensitized solar cells. Journal of Inorganic Materials, 2011, 26(8): 819?822.

[4] LANG L M, WU D, XU Z. Controllable fabrication of TiO2 1D-nano/micro structures: solid, hollow, and tube-in-tube fibers by electrospinning and the photocatalytic performance. Chem -Eur. J., 2012, 18 (34): 10661-10668.

[5] BEDFORD N M, PELAEZ M, HAN C, et al. Photocatalytic cellulosic electrospun fibers for the degradation of potent cyanobacteria toxin microcystin-LR. J. Mater. Chem., 2012, 22(25): 12666-12674.

[6] KITANO M, MATSUOKA M, UESHIMA M, et al. Recent developments in titanium oxide-based photocatalysts. Appl. Catal. A: General, 2007, 325(1): 1-14.

[7] ZHANG QING-HONG. Progress on TiO2-based nanomaterials and its utilization in the clean energy technology. Journal of Inorganic Materials, 2012, 27(1): 1-10.

[8] HAGFELDT A, BOSCHLOO G, SUN L C, et al. Dye-sensitized solar cells. Chem. Rev., 2010, 110(11): 6595-6663.

[9] CAO H M, ZHU Y H, YANG X L, et al. Fabrication of CuInS2 -TiO2 composite fibers by using electrospinning coupled with solvothermal method. RSC Adv., 2012, 2(10): 4055-4058.

[10] CHEN L, ZHANG S C, WANG L Q, et al. Photocqtalytic activity of Zr:SrTiO3 under UV illumination. J. Cryst. Growth, 2009, 311(3): 735-737.

[11] CAO T P, LI Y J, SHAO C L, et al. Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nano?bers heterostructures. Materials Research Bulletin, 2010, 45(10): 1406-1412.

[12] CAO T P, LI Y J, SHAO C L, et al. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir, 2011, 27(6): 2946-2952.

[13] CAO T P, LI Y J, SHAO C L, et al. Bi4Ti3O12nanosheets/TiO2 submicron fibers heterostructure: in site fabrication and high visible light photocatalytic activity. J. Mater. Chem., 2011, 21(19): 6922-6927.

[14] LEE J C, KIM T G, CHOI H J.Enhanced photochemical response of TiO2/CdSe heterostructured nanowires.Cryst. Growth Des., 2007, 7(12): 2588-2593.

[15] QIAN S S, WANG C S, LIU W J, et al. An enhanced CdS/TiO2 photocatalyst with high stability and activity: effect of mesoporous substrate and bifunctional linking molecule. J. Mater. Chem., 2011, 21(13): 4945-4952

[16] CAO X B, LAN X M, GUO Y, et al. Preparation and characterization of bifunctional ZnO/ZnS nanoribbons decorated by gamma-Fe2O3 clusters. J. Phys. Chem. C, 2007, 111(51): 18958-18964.

[17] MASUDA Y, IEDA S, KOUMOTO K. Site-selective deposition of anatase TiO2 in an aqueous solution using a seed layer. Langmuir, 2003, 19(10): 4415-4419.

[18] YU H G, LEE S C, YU J G, et al. Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers. J. Mol. Cata. A, 2006, 246(1/2): 206-211.

[19] KABALNOV ALEXEY. Ostwald ripening and related phenomena. J. Disper. Sci. Technol., 2001, 22(1): 1-12.

[20] ZHAO BIN, LIN LIN, CHEN CHAO, et al. Research progress on crystal growth mechanism of titania/titanate nano-powder materials. Journal of Inorganic Materials, 2013, 28(7): 683?690.

[21] OTSUKA-YAO-MATSUO S, UEDA M. Visible light-induced photobleaching of methylene blue aqueous solution using (Sr1-xLax)TiO3+ δ-TiO2 composite powder.J. Photoch. Photobio. A: Chem., 2004, 168(1/2): 1-6.