doi:

DOI: 10.3724/SP.J.1300.2012.20093

Journal of Radars (雷达学报) 2012/1:4 PP.329-341

Bistatic SAR: State of the Art and Development Trend


Abstract:
Bistatic SAR (BiSAR) systems have attracted the interests from global researchers and become a hotspot in the international radar community due to the progress of radar technology and rapidly increased applications nowadays. Based on the BiSAR experiments and breakthrough of the key technology, the paper summarized the general progresses of BiSAR systems, especially in European radar community, from different aspects such as system design, processing idea and topology etc. Different bistatic image formation algorithms have been analyzed and reviewed. Finally, the development trend is discussed in the paper.

Key words:Bistatic Synthetic Aperture Radar (BiSAR),BiSAR experiment,Bistatic image formation algorithm

ReleaseDate:2014-07-21 16:36:27



[1] 杨振起, 夏惠诚, 姚景顺. 国外双基地雷达发展应用概况[J]. 现代雷达, 1986, 2(1): 46-53.

[2] Gabriel A K and Goldstein R M. Bistatic images from SIR-B[C]. Proceedings of Internafional Geoscience and Remote Sensing Symposium(IGARSS), Amherst, USA, 1985: 1-12.

[3] Goldstein R, Rosen P, and Werner C. ERS-l bistatic radar images [C]. Proceedings of International Geoseience and Remote Sensing Symposium(IGARSS), Pasadena, USA, 1994: 1-5.

[4] Martimek D and Goldstein R. Bistatic radar experiment[C]. European Conference on Synthetic Aperture Radar (EUSAR), Fdedrichshafen, Germany, 1998: 31-34.

[5] Ingo Walterscheid, Joachim H G Ender, Andreas R, et al. Bistatic SAR processing and experiments[J]. IEEE Transactions on Geoscience Remote Sensing, 2006, 44(10): 2710-2717.

[6] Loffeld O, Nies H, Gebhardt U, et al. Bistatic SAR—some reflections on Rocca's smile[C]. Proceedings of the Fifth European Conference on Synthetic Aperture Radar, Ulm, Germany, 2004: 379-383.

[7] Ender J H G, Walterscheid I, and Brenner A R. Bistatic SAR—translational invariant processing and experimental results[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(3): 177-183.

[8] Yates G, Home A M, Blake A P, et al. Bistatic SAR image formation[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(3): 208-213.

[9] Walterscheid I, Espeter T, Brenner A R, et al. Bistatic SAR experiments with PAMIR and terraSAR-X—setup, processing, and image results[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48(8): 3268-3279.

[10] Rodriguez-Cassola M, Prats P, Schulze D, et al. First bistatic spaceborne SAR experiments with tanDEM-X[J]. IEEE Geoscience Remote Sensing Letters, 2012, 9(1): 33-37.

[11] Jesus Sanz-Marcos, Jordi J Mallorqui, et al. First ENVISAT and ERS-2 parasitic bistatic fixed receiver SAR images processed with the subaperture range-Doppler algorithm[C]. IEEE International Geoscience and Remote Sensing Symposium, Aug. 2006: 1840-1843.

[12] Rodriguez-Cassola M, Baumgartner S V, Krieger G, et al. Bistatic terraSAR-X/F-SAR spaceborne—airborne SAR experiment: description, data processing, and results[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48(2): 781-794.

[13] Cherniakov M. Space-surface bistatic synthetic aperture radar-prospective and problems[C]. Porceedings Radar 2002 Conference, Edinburgh, UK, 2002: 22-25.

[14] Whitewood A P, Baker C J, and Griffiths H D. Bistatic radar using a spaceborne illuminator[C]. Proceedings IEE International Radar Conference, Edinburgh, UK, Oct. 2007: 1-5.

[15] Saini R, Zuo R, and Cherniakov M. Signal Synchronization in SS-BSAR based on GLONASS Satellite Emission[C]. Radar Systems, 2007 IET International Conference on, 2007: 1-5.

[16] Duque S, López-Dekker P, and Mallorqui J J. Single-pass bistatic SAR interferometry using fixed-receiver configurations: theory and experimental validation[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48(6): 2740-2749.

[17] Moccia A, Salzillo G, and D’Errico M, et al. Performance of spaceborne bistatic synthetic aperture radar[J]. IEEE Transactions on Aerospace & Electron Systems, 2005, 41(4): 1383-1395.

[18] Dubois-Fernandez P, Cantalloube H, Vaizan B, et al. ONERA-DLR bistatic SAR campaign: planning, dataacquisition, and first analysis of bistatic scattering behaviour of natural and urban targets[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(3): 214-223.

[19] D’Aria D, Guarnieri A M, and Rocca F. Focusing bistatic synthetic aperture radar using dip move out[J]. IEEE Transactions on Geoscience Remote Sensing, 2004, 42(7): 1362-1376.

[20] Loffeld O, Nies H, Peters V, et al. Models and useful relations for bistatic SAR processing[J]. IEEE Transactions on Geoscience Remote Sensing, 2004, 42(10): 2031-2038.

[21] Natroshvili K, Loffeld O, Nies H, et al. Focusing of general bistatic SAR configuration data with 2-D inverse scaled FFT[J]. IEEE Transactions on Geoscience Remote Sensing, 2006, 44(10): 2718-2727.

[22] Yew Lam Neo, Wong F, and Cumming I G. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience Remote Sensing Letters, 2007: 4(1): 93-96.

[23] Xiong Jintao, Xian Li, Huang Yulin, et al. Research on improved RD algorithm for airborne bistatic SAR and experimental data processing [C]. Synthetic Aperture Radar (EUSAR), 2008 7th European Conference on, 2008: 1-4.

[24] Wang Rui, Li Feng, and Zeng Tao. Bistatic SAR experiment, processing and results in spaceborne/stationary configuration [C]. IEEE 2011: 393-396.

[25] Zeng T, Wang R, Li F, et al. A modified nonlinear chirp scaling algorithm for spaceborne/stationary bistatic SAR based on series reversion[J]. IEEE Transactions on Geoscience Remote Sensing, 2012.

[26] Qiu Xiaolan, Hu Donghui, and Ding Chibiao. Non-linear chirp scaling algorithm for one-stationary bistatic SAR[C]. Synthetic Aperture Radar, 2007. APSAR 2007, 1st Asian and Pacific Conference on, Nov. 5-9, 2007: 111-114.

[27] Qiu Xiaolan, Hu Donghui, and Ding Chibiao. An improved NLCS algorithm with capability analysis for one-stationary BiSAR[J]. IEEE Transactions on Geoscience Remote Sensing, 2008, 46(10): 3179-3186.

[28] 仇晓兰, 丁赤飚, 胡东辉. 双站SAR成像处理技术[M]. 北京:科学出版社, 2010.

[29] Tian Weiming, Liu Haibo, Zeng Tao. Frequency and time synchronization error analysis based on generalized signal model for Bistatic SAR[C]. Radar Conference, 2009 IET International, 2009: 1-4.

[30] Tian Weiming, Long Teng, Yang Jian et al. Combined analysis of time&frequency synchronization error for BiSAR[C]. 2011 IEEE CIE International Conference on, 2011, 1: 388-392.

[31] Walterscheid I, Espeter T, Klare J, et al. Potential and limitations of forward-looking bistatic SAR[C]. IGARSS, 2010: 216-219.

[32] Antoniou M, Cherniakov M, and Hu Cheng. Space-surface bistatic SAR image formation algorithms[J]. IEEE Transactions on Geoscience Remote Sensing, 2009, 47(6): 1827-1843.

[33] Antoniou M, Zeng Zhangfan, Liu Feifeng, et al. Experimental demonstration of passive BSAR imaging using navigation satellites and a fixed receiver[J]. IEEE Geoscience Remote Sensing Letters, 2012, 9(3): 477-481.

[34] López-Dekker P, Mallorquí J J, Serra-Morales P, et al. Phase synchronization and doppler centroid estimation in fixed receiver Bistatic SAR systems[J]. IEEE Transactions on Geoscience Remote Sensing, 2008, 46(11): 3459-3471.

[35] Cherniakov M, Zeng T, and Plakidis E. Analysis of space-surface interferometric bistatic radar[C]. Geoscience and Remote Sensing Symposium, 2003, IGARSS’03, Proceedings, 2003 IEEE International, 2003: 778-780.

[36] H Cheng, Zeng Tao, and Z Haibin. Bistatic synthetic aperture radar point spread function characteristic analysis[J]. Journal of Beijing Institute Technology, 2007, 16(2): 193-196.

[37] Cherniakov M, Zeng T, Plakidis E. GALILEO Signal Based Bistatic System for Avalanche Prediction[C]. IEEE 2003: 784-786.

[38] He X, Zeng T, and Cherniakov M. Interference level evaluation in SS-BSAR with GNSS non-cooperative transmitter[J]. Electronics Letters, 2004, 40(19): 1222-1224.

[39] He X, Cherniakov M, and Zeng T. Signal detectability in SS-BSAR with GNSS non-cooperative transmitter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(3): 124-132.

[40] Zeng Tao, Cherniakov M, and Long Tong. Generalized approach to resolution analysis in BSAR[J]. IEEE Transactions on Aerospace & Electron Systems, 2005, 41(2): 461-474.

[41] Ender J H G, Walterscheid I, and Brenner A R. New aspects of bistatic SAR: processing and experiments[C]. IEEE IGARSS’04, 2004, 3: 1758-1762.

[42] Ender J H G. A step to bistatic SAR processing[C]. EUSAR 2004: 1-5.

[43] Loffeld O, Nies H, Gebhardt U, et al. Bistatic SAR—some reflections on Rocca's smile[C]. Proceedings Europe Conference Synthetic Aperture Radar, EUSAR’2004, Ulm, Germany, May 2004: 379-383.

[44] Ender J H G. Signal theoretical aspects of bistatic SAR[C]. In Proceedings IEEE IGARSS’03, 2003, 3: 1438-1441.

[45] Walterscheid I, Brenner A R, and Ender J H G. Results on bistatic synthetic aperture radar[J]. Electronics Letters, 2004, 40(19): 1224-1225.

[46] Wang R, Loffeld O, Nies H, et al. Chirp-scaling algorithm for bistatic SAR data in the constant-offset configuration[J]. IEEE Transactions on Geoscience Remote Sensing, 2009, 47(3): 952-964.

[47] Wang R, Loffeld O, Ul-Ann Q, et al. A bistatic point target reference spectrum for general bistatic SAR processing[J]. IEEE Geoscience Remote Sensing Letters, 2008, 5(3): 517-521.

[48] Neo Y L, Wong F H, and Cumming I G. A comparison of point target spectra derived for bistatic SAR processing[J]. IEEE Transactions on Geoscience Remote Sensing, 2008, 46(9): 2481-2492.

[49] Zhang Zhenhua, Xing Mengdao, Ding Jinshan et al. Focusing parallel bistatic SAR data using the analytic transfer function in the wavenumber domain[J]. IEEE Transactions on Geoscience Remote Sensing, 2007, 45(11): 3633-3645.

[50] Bai Xia, Sun Jinping, and Mao Shiyi. A novel approach for bistatic SAR imaging using a stationary receiver[C]. ICSP2008 Proceedings, 2008: 2250-2253.

[51] Yu Ding and Munson D C, Jr.. A fast back projection algorithm for bistatic SAR imaging[C]. Proceedings IEEE Image Processing 2002, 2002: 449-452.

[52] Hu Cheng, Zeng Tao, Long Teng et al. Fast back-projection algorithm for Bistatic SAR with parallel trajectory[C]. Proceedings EUSAR 2006, 2006: 1-4.

[53] Xiong Jintao, Xian Li, Huang Yulin et al. Research on improved RD algorithm for airborne bistatic SAR and experimental data processing[C]. Synthetic Aperture Radar (EUSAR), 2008 7th European Conference on, 2008: 1-4.

[54] Xian Li, Xiong Jintao, Huang Yulin et al. Research on airborne bistatic SAR squint imaging mode algorithm and experiment data processing[C]. APSAR 2007.

[55] Xu San-yuan and Wang Jian-guo. Experimental data imaging for the airborne bistatic SAR[J]. Journal of Remote Sensing, 2010: 262-271.

[56] Zhong H and Liu X Z. An extended nonlinear chirp-scaling algorithm for focusing large-baseline azimuth-invariant bistatic SAR data[J]. IEEE Geoscience Remote Sensing Letters, 2009, 6(3): 548-552.

[57] Liu Baochang, Wang Tong, Wu Qisong, et al. Bistatic SAR data focusing using an omega-K algorithm based on method of series reversion[J]. IEEE Transactions on Geoscience Remote Sensing, 2009, 47(8): 2899-2912.

[58] Ulander L M H, Hellsten H, and Stenstrom G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace & Electron Systems, 2003, 39(3): 760-776.

[59] Eldhuset K. Spaceborne bistatic SAR processing using the EETF4 algorithm[J]. IEEE Geoscience Remote Sensing Letters, 2009, 6(2): 194-198.

[60] Bamler R, Meyer F, and Liebhart W. Processing of bistatic SAR data from quasi-stationary configurations[J]. IEEE Transactions on Geoscience Remote Sensing, 2007, 45(11): 3350-3358.