DOI: 10.3724/SP.J.1249.2013.04331

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2013/30:4 PP.331-348

Advance reseach on strategies for the prevention of Alzheimer’s disease

This review briefly introduces multiple theories on Alzheimer's disease (AD) pathogenesis such as the cholinergic theory, the amyloid-β cascade hypothesis, the ABC theory (aging, β-amyloid, channel), and theories of tau hyperphosphorylation, oxidative stress, neuronal apoptosis, and gene mutation. As AD is closely related with aging, and its pathology is caused by multiple factors, its pathogenesis is bound to be multiple and intricate. Besides, the loss of neurons cannot be regenerated, which suggests that early prediction and intervention in AD treatment is very important. This paper stresses the urgency in developing early diagnosis methods, including positron emission tomography (PET), magnetic resonance imaging (MRI), and sensitive AD biomarkers from blood and urine. The drugs for AD prevention and treatment are generally divided into six types: first-line drugs, vaccines, drugs in the research stage, adjuvant therapy drugs, traditional Chinese medicines, and health products (also known as Medical food). As the top three types have not yet make a breakthrough in AD treatment over a long period of time, people recently turned to pay close attention to the application and mechanism of the other three types of drugs for delaying AD progression. Research in our lab focuses on the effect and mechanism of the latter three types of drugs, and preliminary results show that selenomethionine, coenzyme Q-10, and icariin can significantly prevent AD progression. This paper evaluates the situation and challenge the anti-AD drugs are facing and proposes a change in the strategy for AD prevention: Single-target treatments should be abandoned, and multiple-target idea and inter-related systematic biology should be adopted for studying AD mechanisms and developing new drugs.

Key words:Neurodegenerative disease,Alzheimer’s disease (AD),pathology,medical imaging,drug therapy,cognitive disorder,literature review

ReleaseDate:2014-07-21 16:55:44

Funds:National Natural Science Foundation of China (21271131, 31070731)

[1] Alzheimer’s Disease International. Alzheimer’s disease international world Alzheimer report 2010: The Global Economic Impact of Dementia[R]. London: Alzheimer’s Disease International, 2010: 1-56.

[2] Chen Ting, Xu Lili, Chen Xiaojing, et al. The analysis and forecast on population aging in China[J]. Chinese Journal of Management Science, 2011, 19(Special Issue): 711-716.(in Chinese)陈婷,徐丽丽,陈晓静,等. 中国人口老龄化问题的分析与预测[J]. 中国管理科学, 2011, 19(专辑): 711-716.

[3] Song Yuetao, Wang Jintang. Overview of Chinese research on senile dementia in mainland China[J]. Ageing Research Reviews, 2010, 9 (Supplement 1): S6- S 12.

[4] Chen Chuanfeng, He Chenglin, Chen Hongxia, et al. A summary of dementia studies in China[J]. Jouranal of Ningbo University Eudcationall Science Education, 2012, 34(2):45-50.(in Chinese)陈传峰,何承林,陈红霞,等. 我国老年痴呆研究概况[J]. 宁波大学学报教育科学版, 2012, 34(2): 45-50.

[5] Wang Desheng, Zhang Shouxin. Senile Dementia[M]. Beijing: People’s Medical Publishing House, 2001: 77-122.(in Chinese)王德生,张守信. 老年性痴呆[M]. 北京:人民卫生出版社, 2001: 77-122.

[6] Li Wenbin, Wang Luning, Cai Jianping, et al. Pathogenesis of Alzheimer’s Disease: ABC Hypothesis[M]. Beijing: Military Medical Science Press, 2005: 1-35.(in Chinese)李文彬,王鲁宁,蔡坚平,等. 阿耳茨海默(Alzheimer)痴呆发病机理: ABC学说[M]. 北京:军事医学科学出版社, 2005: 1-35.

[7] Hong Tao. Infectious & Non-Infectious Dementia Prion & Alzheimer’s Disease[M]. Beijing: Science Press, 2011: 235-462.(in Chinese)洪涛. 传染性与非传染性痴呆症[M]. 北京:科学出版社, 2011: 235-462.

[8] Jana A, Pahan K. Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease[J]. Journal of Neuroscience, 2010, 30(38): 12676-12689.

[9] Nath S, Agholme L, Kurudenkandy F R, et al. Spreading of neurodegenerative pathology via neuron-to-neuron transmission of beta-amyloid[J]. Journal of Neuroscience, 2012, 32(26): 8767-8777.

[10] Kurnellas M P, Adams C M, Sobel R A, et al. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation[J]. Science Translational Medicine, 2013, 5(179): 179ra42.

[11] Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases[J]. Human Mutation, 2012, 33(9): 1340-1344.

[12] Jonsson T, Atwal J K, Steinberg S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline[J]. Nature, 2012, 488(7409): 96-99.

[13] Reiman E M, Webster J A, Myers A J, et al. GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers[J]. Neuron, 2007, 54(5): 713-720.

[14] Harold D, Abraham R, Hollingworth P, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease[J]. Nature Genetics, 2009, 41(10): 1088-1093.

[15] Braskie M N, Jahanshad N, Stein J L, et al. Common Alzheimer’s disease risk variant within the CLU gene affects white matter microstructure in young adults[J]. Journal of Neuroscience, 2011, 31(18): 6764-6770.

[16] Xu Xiaohui, Zhang Zhijun. Lipid metabolism-related genes and Alzheimer’s disease[J]. Chinese Journal Cerebrovasc Disease Electronic Edition, 2012, 6(2): 41-45.(in Chinese)徐小惠,张志珺. 脂质代谢通路候选基因与阿尔茨海默病关系的研究进展[J]. 中华脑血管病杂志, 2012, 6(2): 41-45.

[17] Schjeide B M, Schnack C, Lambert J C, et al. The role of clusterin, complement receptor 1, and phosphatidylinositol binding clathrin assembly protein in Alzheimer disease risk and cerebrospinal fluid biomarker levels[J]. Archives of General Psychiatry, 2011, 68(2): 207-213.

[18] Lambert J C, Heath S, Even G, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease[J]. Nature Genetics, 2009, 41(10): 1094-1099.

[19] Keenan B T, Shulman J M, Chibnik L B, et al. A coding variant in CR1 interacts with APOE-epsilon4 to influence cognitive decline[J]. Human Molecular Genetics, 2012, 21(10): 2377-2388.

[20] Rogaeva E, Meng Y, Lee J H, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease[J]. Nature Genetics, 2007, 39(2): 168-177.

[21] Reitz C, Cheng R, Rogaeva E, et al. Meta-analysis of the association between variants in SORL1 and Alzheimer disease[J]. Archives of Neurology, 2011, 68(1): 99-106.

[22] Ciarlo E, Massone S, Penna I, et al. An intronic ncRNA-dependent regulation of SORL1 expression affecting Abeta formation is upregulated in post-mortem Alzheimer’s disease brain samples[J]. Disease Models & Mechanisms, 2013, 6(2): 424-433.

[23] Naj A C, Jun G, Beecham G W, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease[J]. Nature Genetics, 2011, 43(5): 436-441.

[24] Hollingworth P, Harold D, Sims R, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease[J]. Nature Genetics, 2011, 43(5): 429-435.

[25] Zhang Weiwei, Zhang Zhiguang, Feng Shuli,et al. Brain DT-MRI for recognit ion of Alzheimer’s disease[J]. Jouranl of Tsinghua University Science & Technology , 2005, 45(12): 1684-1687.(in Chinese)章炜炜,张志广,冯树理,等. 阿尔茨海默病DT-MRI脑成像的识别[J]. 清华大学学报自然科学版, 2005, 45(12): 1684-1687.

[26] Pravat K Mandal. Magnetic resonance spectroscopy (MRS) and its application in Alzheimer’s disease[J]. Concepts in Magnetic Resonance Part A (Bridging Education and Research), 2007, 30A(1): 40-64.

[27] Matsuda H. Role of neuroimaging in Alzheimer’s disease, with emphasis on brain perfusion SPECT[J]. Journal of Nuclear Medicine, 2007, 48(8): 1289-1300.

[28] Wang Haifeng, Huang Jianzheng. The clinical progress of PET/SPECT receptor imaging of Alzheimer’s disease[J]. Chinese Journal of Neuromedicine, 2003,2(6):456-467.(in Chinese)王海峰,黄鉴政. 阿尔茨海默病PET/ SPECT 受体显像的临床研究进展[J]. 中华神经医学杂志, 2003, 2(6): 465-467.

[29] Yao Shulin, Guo Zhe, Yin Tianyi, et al. Role of 11C-PIB pet imaging in the evaluation of Alzheimer’s disease rat model[J]. Chinese Science Abstract, 2008, 26(8): 24-27.(in Chinese)姚树林,郭喆,尹天一,等. 11C—PlB PET用于阿尔茨海默病大鼠模型评价研究[J]. 科技导报, 2008, 26(8): 24-27.

[30] Yao Zhiwen, Ding Zhengtong, Wang Jian, et al.[11C]6-OH-BTA-1’s biodistribution in vivo distribution of APP transgenic mice and healthy rhesus monkey[J]. Chinese Journal of Clinical Neurosciences, 2009, 17(4): 365-371.(in Chinese)姚志文,丁正同,王坚,等. 淀粉样蛋白显像剂[11C]6-OH-BTA-1 在转基因型痴呆鼠和正常猴体内的分布[J]. 中国临床神经科学, 2009, 17(4): 365-371.

[31] Yin Xiaojing, Hu Lingling, Peng Yu, et al. The significance of determination of plasm 3-NT levels in patients with Alzheimer disease[J]. Journal of Soochow University Medical Science Edition, 2012,32(6): 837-852. (in Chinese)殷小菁,胡玲玲,彭誉,等. 阿尔茨海默病患者血浆3-NT 浓度的变化及其临床意义[J]. 苏州大学学报医学版, 2012, 32(6): 837-852.

[32] Wang Jun, Zhang Ying, Zheng Yanpeng, et al. Fluid and imaging biomarkers in early diagnosis of Alzheimer’s disease: research front and perspectives[J]. Journal of Chinese Medical Frontiers Electronic Version, 2012, 4(10): 36-47.(in Chinese)王军,张莹,郑妍鹏,等. 阿尔茨海默病早期诊断:影像学和体液生物标志物研究前沿和新动态[J]. 中国医学前沿杂志电子版, 2012, 4(10): 36-47.

[33] Zeng Fan, Zhang Jiqiang, Wang Yanjiang. Effect and evaluation of body fluids biomarker in early diagnosis of Alzheimer’s Disease[J]. Chinese Journal of Nervours Mental Disease, 2011, 37(4): 244-246.(in Chinese)曾凡,张吉强,王延江. 体液生物标记物在阿尔茨海默病早期诊断中的作用与评价[J]. 中国神经精神疾病杂志, 2011, 37(4): 244-246.

[34] Wang Hongjuan, Zhao Zhiwei, Ji Zhijuan, et al. Coexistence of AD7c-NTP and insulin receptor in CA1 zone of hippocampus in mouse[J]. Journal of Capital Medical University, 2007, 28(3): 324-327.(in Chinese)王宏娟,赵志炜,姬志娟,等. AD7c-NTP与胰岛素受体在小鼠海马CA1区的共存关系[J]. 首都医科大学学报, 2007, 28(3): 324-327.

[35] Yan Peng, Wang Rong, Du Yifeng, et al. AD7c-NTP level in urine of patients with Alzheimer’s disease[J]. Journal of Shandong University Health Science, 2009, 47(6): 106-117.(in Chinese)闫鹏,王蓉,杜怡峰,等. 老年性痴呆患者尿中AD7c-NTP 含量的研究[J]. 山东大学学报医学版, 2009, 47(6): 106-117.

[36] Xiang Zhiqing, Chen Yuemin, Xu Yifeng. Pupil dilation test: a predictive test for Alzheimer’s disease[J]. Shanghai Archives of Psychiatry, 2008, 20(2): 82-84.(in Chinese)项志清,陈月敏,徐一峰. 扩瞳试验对阿尔茨海默病的预测效应[J]. 上海精神医学, 2008, 20(2): 82-84.

[37] Hanlon E B, Perelman L T, Vitkin E I, et al. Scattering differentiates Alzheimer disease in vitro[J]. Optics Letters, 2008, 33(6): 624-626.

[38] Li Gaili, Wang Bing’ang, Wang Jian, et al. Effect of combination therapy of Alzheimer’s disease with Donepezil and Memantine[J]. Chinese Journal of Gerontology, 2011, 31: 2968-2969.(in Chinese)李改丽,汪丙昂,王建,等. 安理申联合美金刚治疗老年性痴呆的疗效[J]. 中国老年学杂志, 2011, 31: 2968-2969.

[39] Yang W, Wong Y, Ng OT, et al. Inhibition of beta-amyloid peptide aggregation by multifunctional carbazole-based fluorophores[J]. Angewandte Chemie International Edition, 2012, 51(8): 1804-1810.

[40] Chakrabortee S, Liu Y, Zhang L, et al. Macromolecular and small-molecule modulation of intracellular Abeta42 aggregation and associated toxicity[J]. Biochemical Journal, 2012, 442(3): 507-515.

[41] Wright O, Zhang L, Liu Y, et al. Critique of the use of fluorescence-based reporters in Escherichia coli as a screening tool for the identification of peptide inhibitors of Abeta42 aggregation[J]. Journal of Peptide Science, 2013, 19(2): 74-83.

[42] Ratia M, Gimenez-Llort L, Camps P, et al. Huprine X and huperzine A improve cognition and regulate some neurochemical processes related with Alzheimer’s disease in triple transgenic mice (3xTg-AD)[J]. Neurodegenerative Diseases, 2013, 11(3): 129-140.

[43] Yang L, Ye C Y, Huang X T, et al. Decreased accumulation of subcellular amyloid-beta with improved mitochondrial function mediates the neuroprotective effect of huperzine A[J]. Journal of Alzheimers Disease, 2012, 31(1): 131-142.

[44] Rafii M S, Walsh S, Little J T, et al. A phase II trial of huperzine A in mild to moderate Alzheimer disease[J]. Neurology, 2011, 76(16): 1389-1394.

[45] Zhang C, Browne A, Child D, et al. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein[J]. Journal of Biological Chemistry, 2010, 285(37): 28472-80.

[46] Chandra V, Pandav R, Dodge H H, et al. Incidence of Alzheimer’s disease in a rural community in India: the Indo-US study[J]. Neurology, 2001, 57(6): 985-989.

[47] Garcia-Alloza M, Borrelli L A, Rozkalne A, et al. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model[J]. Journal of Neurochemistry, 2007, 102(4): 1095-104.

[48] Huang H C, Xu K, Jiang Z F. Curcumin-mediated neuroprotection against amyloid-beta-induced mitochondrial dysfunction involves the inhibition of GSK-3beta[J]. Journal of Alzheimer’s Disease, 2012, 32(4): 981-996.

[49] Lazar A N, Mourtas S, Youssef I, et al. Curcumin-conjugated nanoliposomes with high affinity for Abeta deposits: Possible applications to Alzheimer disease[J]. Nanomedicine, 2013, 9(5): 712-721.

[50] Wang Pengwen, Li Ruisheng, Wang Hong, et al. Effect of curcumin on production and degradation of A in APPswe /PS1dE9 double transgenic mice[J]. Acta Laboratorium Animalis Scientia Sinica, 2010, 18(5): 367-371.(in Chinese)王蓬文,李瑞晟,王虹,等. 姜黄素对APPswe/PS1dE9双转基因小鼠A生成和降解的影响[J]. 中国实验动物学报, 2010, 18(5): 367-371.

[51] Wei Peng, Li Ruisheng, Wang Hong, et al. Effect of curcumin on synapse-related protein expression of APP /PS1 double transgenic mice[J]. China Journal of Chinese Materia Medica, 2012, 37(12): 1818-1821.(in Chinese)魏鹏,李瑞晟,王虹,等. 姜黄素对APP/PS1双转基因小鼠突触相关蛋白表达的影响[J]. 中国中药杂志, 2012, 37(12): 1818-1821.

[52] Urano Takuya, Tohda Chihiro. Icariin improves memory impairment in Alzheimer’s disease model mice (5xFAD) and attenuates amyloid beta-induced neurite atrophy[J]. Phytotherapy Research, 2010, 24(11): 1658-1663.

[53] Zeng K W, Ko H, Yang H O, et al. Icariin attenuates beta-amyloid-induced neurotoxicity by inhibition of tau protein hyperphosphorylation in PC12 cells[J]. Neuropharmacology, 2010, 59(6): 542-550.

[54] Li Lin, Zhang Lan. Action characteristics of traditional Chinese medicine in treatment of Alzheimer’s disease[J]. Progress in Biochemistry and Biophysics, 2012, 39(8): 816-828.(in Chinese)李林,张兰. 中药治疗阿尔茨海默病的作用特点[J]. 生物化学与生物物理进展, 2012, 39(8): 816-828.

[55] Mazza M, Capuano A, Bria P, et al. Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer’s dementia in a randomized placebo-controlled double-blind study[J]. European Journal of Neurology, 2006, 13(9): 981-985.

[56] Weinmann S, Roll S, Schwarzbach C, et al. Effects of Ginkgo biloba in dementia: systematic review and meta-analysis[J]. BMC Geriatrics, 2010, 10: 1-14.

[57] Vellas B, Coley N, Ousset P J, et al. Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): a randomised placebo-controlled trial[J]. Lancet Neurology, 2012, 11(10): 851-859.

[58] Yu Qi, Cui Meng, Li Yuanbai, et al. Literature appraisement of clinical trials in TCM treatment of Alzheimer’s disease[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2011, 26(4): 788-791.(in Chinese)于 琦,崔蒙,李园白,等. 中医药治疗阿尔茨海默病临床试验文献评价[J]. 中华中医药杂志, 2011, 26(4): 788-791.

[59] Xu Yi, Tian Jinzhou, Sheng Shuli, et al. Effect of GETO on learning and memory of experiment AD model Rats and its mechanism[J]. Chinese Journal of Traditional Chinese Medicine, 2006, 21(4): 216-219.(in Chinese)徐意,田金洲,盛树力,等. 金思维对Alzhemier病模型大鼠学习记忆障碍的改善作用及其机制[J]. 中华中医药杂志, 2006, 21(4): 216-219.

[60] Seo J S, Yun J H, Baek I S, et al. Oriental medicine Jangwonhwan reduces Abeta(1-42) level and beta-amyloid deposition in the brain of Tg-APPswe/PS1dE9 mouse model of Alzheimer disease[J]. Journal of Ethnopharmacology, 2010, 128(1): 206-212.

[61] Kong Lingna. Studies on Pharmacological Mechanism of Marine Sulfated Oligosaccharide HSH-971 on Alzheimer’s Disease[D]. Beijing: Chinese Peking Union Medical College, 2005.(in Chinese)孔令娜. 海洋硫酸寡糖HSH-971防治老年痴呆的药物作用机理[D]. 北京: 中国北京协和医院, 2005.

[62] Sun Liping, Xue Changhu, Xu Jiachao, et al. A study of the antioxidant abilitie s of alginate oligo saccharides[J]. Periodical of Ocean University of China, 2005, 35(5): 811-814.(in Chinese)孙丽萍,薛长湖,许家超,等. 褐藻胶寡糖体外清除自由基活性的研究[J]. 中国海洋大学学报, 2005, 35(5): 811-814.

[63] Tusi S K, Khalaj L, Ashabi G, et al. Alginate oligosaccharide protects against endoplasmic reticulum- and mitochondrial-mediated apoptotic cell death and oxidative stress[J]. Biomaterials, 2011, 32(23): 5438-5458.

[64] Fan Ying, Yang Zhao, Geng Meiyu. Protective effect of alginate polysaccharide JM on brain ische-mia injury in rats[J]. Chinese Journal of Marine Drugs, 2007, 26(1): 36-39.(in Chinese)范莹,杨钊,耿美玉. 褐藻多糖JM对脑缺血的保护作用[J]. 中国海洋药物杂志, 2007, 26(1): 36-39.

[65] Qiu Lin. Structure-Function Relationshipi Study of Algine-Derived Saccharides on H2O2-Induced Cytotoxicity[D]. Qingdao: Ocean University of China, 2009.(in Chinese)邱琳. 不同褐藻酸糖片段及其衍生物对神经细胞氧化损伤保护作用的构效关系研究[D]. 青岛:中国海洋大学. 2009.

[66] Yang X, Dai G, Li G, et al. Coenzyme Q10 reduces beta-amyloid plaque in an APP/PS1 transgenic mouse model of Alzheimer’s disease[J]. Journal of Molecular Neuroscience, 2010, 41(1): 110-113.

[67] Yang X, Yang Y, Li G, et al. Coenzyme Q10 attenuates beta-amyloid pathology in the aged transgenic mice with Alzheimer presenilin 1 mutation[J]. Journal of Molecular Neuroscience, 2008, 34(2): 165-171.

[68] Dumont M, Kipiani K, Yu F, et al. Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer’s disease[J]. Journal of Alzheimer’s Disease, 2011, 27(1): 211-223.

[69] Choi H, Park H H, Koh S H, et al. Coenzyme Q10 protects against amyloid beta-induced neuronal cell death by inhibiting oxidative stress and activating the P13K pathway[J]. Neurotoxicology, 2012, 33(1): 85-90.

[70] Elipenahli C, Stack C, Jainuddin S, et al. Behavioral improvement after chronic administration of coenzyme Q10 in P301S transgenic mice[J]. Journal of Alzheimer’s Disease, 2012, 28(1): 173-182.

[71] Geng Lin, Zhang Yunming, Li Ye, et al. The Clinical research of plasma homocysteine levels in senile dementia[J]. Progress in Modern Biomedicine, 2012, 12(9): 1683-1685.(in Chinese)耿林,张云明,李晔,等. 老年痴呆与血浆同型半胱氨酸水平关系的临床研究[J]. 现代生物医学进展, 2012, 12(9): 1683-1685.

[72] Liu Xianfeng, Zhang Guohua. Homocysteine in Internal Medicine Diseases[M]. Beijing: People’s Medical Publishing House. 2007.(in Chinese)刘险峰,张国华. 同型半胱氨酸与内科常见病[M]. 北京: 人民军医出版社. 2007.

[73] Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease[J]. New England Journal of Medicine, 2002, 346(7): 476-483.

[74] Clarke R, Smith A D, Jobst K A, et al. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease[J]. Archives of Neurology, 1998, 55(11): 1449-1455.

[75] Liu Qiong, Tian Jing, Chen Ping, et al. Selenium deficiency and Alzheimer’s disease[J]. Chinese Bulletin of Science, 2012, 24(8):893-900.(in Chinese)刘琼, 田静, 陈平,等. 硒缺乏与阿尔茨海默症[J]. 生命科学, 2012, 24(8): 892-900.

[76] Chen P, Wang R R, Ma X J, et al. Different forms of selenoprotein M differentially affect Aβ aggregation and ROS generation[J]. International Journal of Molecular Sciences, 2013, 14(3): 4385-4399.

[77] Liu L, Zhang L, Mao X, et al. Chaperon-mediated single molecular approach toward modulating Aβ peptide aggregation[J]. Nano Letters, 2009, 9(12): 4066-4072.

[78] Battin E E, Brumaghim J L. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms[J]. Cell Biochemistry and Biophysics, 2009, 55(1): 1-23.

[79] Smith J L, Xiong S, Lovell M A. 4-Hydroxynonenal disrupts zinc export in primary rat cortical cells[J]. Neurotoxicology, 2006, 27(1): 1-5.

[80] Sensi S L, Paoletti P, Bush A I, et al. Zinc in the physiology and pathology of the CNS[J]. Nature Reviews Neuroscience, 2009, 10(11): 780-791.

[81] Du Xiubo, Li Haiping, Wang Zhi, et al. Selenoprotein P and selenoprotein M block Zn2+-mediated Aβ42 aggregation and toxicity[J]. Metallomics, 2013, 5: 861-870.

[82] Corcoran N M, Martin D, Hutter-Paier B, et al. Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model[J]. Journal of Clinical Neuroscience, 2010, 17(8): 1025-1033.

[83] Hong M, Lee V M. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons[J]. Journal of Biological Chemistry, 1997, 272(31): 19547-19553.

[84] Candeias E, Duarte A I, Carvalho C, et al. The impairment of insulin signaling in Alzheimer’s disease[J]. IUBMB Life, 2012, 64(12): 951-957.

[85] Mary T N, Hirsch C. Alzheimer’s Aisease: What If There was a Cure? Basic Health Publications[M]. Laguna Beach(USA): Basic Health Publication, Inc. 2011.

[86] Henderson S. Ketone bodies as a therapeutic for Alzheimer’s disease[J]. Neurotherapeutics, 2008, 5(3): 470-480.

[87] Wang L, Pooler A M, Albrecht M A, et al. Dietary uridine-5’-monophosphate supplementation increases potassium-evoked dopamine release and promotes neurite outgrowth in aged rats[J]. Journal of Molecular Neuroscience, 2005, 27(1): 137-145.