DOI: 10.3724/SP.J.1249.2013.04398

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2013/30:4 PP.398-403

Influence of Helium plasma pre-treatment on properties of polycrystalline silicon films

Polycrystalline silicon thin films deposited on p-type (100) silicon wafer substrates were prepared by means of microwave electron cyclotron resonance plasma-enhanced magnetron sputtering (ECR-PEMS) and microwave electron cyclotron resonance chemical vapor deposition (ECR-CVD) at low temperatures in the present work.To characterize the microstructure and surface morphology of the films, the Raman spectroscopy, X-ray diffraction and atomic force microscopy were used.The study focuses on the effect of pure helium plasma substrate pre-treatment on the deposited film properties.The results show that the film crystallinity and grain size are obviously enhanced by the helium plasma pre-treatment in both deposition processes.At the same time, the microstructure and surface morphology of polycrystalline silicon film with ECR-CVD are improved.

Key words:plasma,polycrystalline silicon thin films,electron cyclotron resonance,plasma enhanced,helium plasma,magnetron sputtering,chemical vapor deposition,film crystallinity,nanomaterials

ReleaseDate:2014-07-21 16:56:23

Funds:Foundation for Distinguished Young Talents in Higher Education of Guangdong (2012LYM0115); Shenzhen Technology Research Foundation for Basic Project (JC201005280485A)

[1] Rath J K. Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications[J]. Photovoltaics and Photoactive Materials:Properties, Technology and Applications, 2003, 76 (4):431-487.

[2] Chung Y B, Park H K, Lee D K, et al. Low temperature deposition of crystalline silicon on glass by hot wire chemical vapor deposition[J]. Journal of Crystal Growth, 2011, 327(1):57-62.

[3] Wang Z, Cao J, Fu C Q, et al. Preparation of polycrystalline silicon thin film for solar cells on glass by aluminum-induced layer exchange[J]. Surface and Coatings Technology, 2012, 228(S1):S155-S158.

[4] Wu B R, Lo S Y, Wuu D S, et al. Direct growth of large grain polycrystalline silicon films on aluminum-induced crystallization seed layer using hot-wire chemical vapor deposition[J]. Thin Solid Films, 2012, 520(18):5860-5866.

[5] Delmdahl R. The excimer laser:precision engineering[J]. Nature Photonics, 2010, 4(5):286-287.

[6] Jang J, Oh J Y, Kim S K, et al. Electric-field-enhanced crystallization of amorphous silicon[J]. Nature, 1998, 395(6701):481-483.

[7] Englander O, Christensen D, Lin L. Local synthesis of silicon nanowires and carbon nanotubes on microbridges[J]. Applied Physics Letters, 2003, 82(26):4797-4799.

[8] Englander O, Christensen D, Kim J, et al. Electric-field assisted growth and self-assembly of intrinsic silicon nanowires [J]. Nano Letters, 2005, 5(4):705-708.

[9] Kawano T, Christensen D, Chen S, et al. Formation and characterization of silicon/carbon nanotube/silicon heterojunctions by local synthesis and assembly[J]. Applied Physics Letters, 2006, 89(16):163510-1-163510-3.

[10] Dittmer S, Mudgal S, Nerushev O A, et al. Local heating method for growth of aligned carbon nanotubes at low ambient temperature[J]. Low Temperature Physics, 2008, 34(10):834-837.

[11] Sosnowchik B D, Lin L, Englander O. Localized heating induced chemical vapor deposition for one-dimensional nanostructure synthesis[J]. Journal of Applied Physics, 2010, 107(5):051101-1-051101-14.

[12] Engstrm D S, Rupesinghe N L, Teo K B K, et al. Vertically aligned CNT growth on a microfabricated silicon heater with integrated temperature control-determination of the activation energy from a continuous thermal gradient[J]. Journal of Micromechanics and Microengineering, 2011, 21(1):015004-1-015004-7.

[13] Choi J H, Ahn H Y, Lee Y S, et al. Nearly perfect polycrystalline, large-grained silicon arrays formed at low-temperature ambient by local pyrolysis[J]. Crystal Growth and Design, 2012, 12(5):2472-2477.

[14] Neitzert H C, Layadi N, Cabarrocas P Roca i, et al. In situ measurements of changes in the structure and in the excess charge-carrier kinetics at the silicon surface during hydrogen and helium plasma exposure[J]. Journal of Applied Physics, 1995, 78(3):1438-1445.

[15] Temmerman G D, Bystrov K, Zielinski J J. Nanostructuring of molybdenum and tungsten surfaces by low-energy helium ions[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2012, 30(4):041306-1041306-6.

[16] Kajita S, Sakaguchi W, Ohno N, et al. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions[J]. Nuclear Fusion, 2009, 49(9):095005-1-095005-6.

[17] Nishijima D, Ye M Y, Ohno N, et al. Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II[J]. Journal of Nuclear Materials, 2004, 329/330/331/332/333(part B):1029-1033.

[18] Ru Lili, Huang Jianjun, Gao Liang, et al. Hydrogen-free diamond-like carbon films prepared by microwave electron cyclotron resonance plasma-enhanced direct current magnetron sputtering[J]. Thin Solid Films, 2010, 519(1):86-90.

[19] Ru Lili, Huang Jianjun, Gao Liang, et al. Influence of microwave power on the properties of hydrogenated diamond-like carbon films prepared by ECR plasma enhanced DC magnetron sputtering[J]. Plasma Science and Technology, 2010, 12(5):551-555.

[20] Islam M N, Kumar S. Influence of crystalline size distribution on the micro-Raman analysis of porous Si[J]. Applied Physics Letters, 2001, 78(6):715-717.

[21] Kobliska R J, Solin S A. Raman spectrum of Wurtzite silicon[J]. Physical Review B, 1973, 8(8):3799-3802.

[22] Luysberg M, Hapke P, Carius R, et al. Structure and growth of hydrogenated microcrystalline silicon:investigation by transmission electron microscopy and Raman spectroscopy of films grown at different plasma excitation frequencies[J]. Philosophical Magazine A, 1997, 75(1):31-47.

[23] Droz C, Vallat-Sauvain E, Bailat J, et al. Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2004, 81(1):61-71.

[24] Torres I, Barrio R, Santos J D, et al. Effect of radio frequency power and total mass-flow rate on the properties of microcrystalline silicon films prepared by helium-diluted-silane glow discharge[J]. Thin Solid Films:2010, 518(23):7019-7023.