﻿
 doi:

DOI: 10.3724/SP.J.1249.2017.02157

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2017/34:2 PP.157-164

## Improvement and experimental verification of transient temperature field calculation for freezing clay

• Wang Kai 1   Li Shunqun 1,2   Chen Zhixiang 1   Gui Chao 3
• 1.School of Civil Engineering, Tianjin Chengjian University, Tianjin 300384, P. R. China;
• 2.Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment, Tianjin 300384, P. R. China;
• 3.Department of Civil Engineering and Architecture, Xinxiang University, Xinxiang 453003, Henan Province, P. R. China

Abstract：
We analyze the existing problems in the calculation of transient temperature field in freezing soil and identify that the main cause of the calculation error of transient temperature field is the change of unfrozen water content with the temperature in freezing clay. Based on the calculation model of unfreezing water content and the dynamic relationship of water/ice phase latent, we establish the heat-mass diffusion equations for freezing clay, and analyze the transient temperature field. By using three existing calculation methods and the proposing transient temperature field calculation method in freezing soil, we conduct the simulation of the transient temperature field of artificial freezing experiment for model slot by ABAQUS software, and compare the four simulation results with the experimental results, respectively. The results show that the method of calculating transient temperature field in freezing clay is not only theoretically reliable but also more accurate than three existing methods. The method can improve the calculation accuracy of the coupled problem of moisture-heat-stress, and then serves the design and practice of artificial freezing method.

Key words：frozen soil engineering,artificial freezing,moisture-heat-stress coupled,transient temperature field,latent heat,freezing clay

ReleaseDate：2017-04-10 18:10:20

[1] 田鸿宾, 孙兆荃. 世界城市地铁发展综述[J]. 土木工程学报, 1995, 28(1):73-78. Tian Hongbin, Sun Zhaoquan. Review of world city subway development[J]. China Civil Engineering Journal, 1995, 28(1):73-78.(in Chinese)

[2] 乔京生, 陶龙光, 弥尚银. 地铁隧道水平冻结施工地表变形特性的模拟研究[J]. 岩土力学与工程学报, 2004, 23(15):2643-2646. Qiao Jingsheng, Tao Longguang, Mi Shangyin. Simulation study on deformation characteristics of ground surface in horizontal freezing construction of metro tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15):2643-2646.(in Chinese)

[3] 金永军, 杨维好. 冻土直墙用于基坑支护的研究[J]. 岩土力学与工程学报, 2004, 23(13):2280-2285. Jin Yongjun, Yang Weihao. Application of linear frozen soil wall to support of foundation pit[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(13):2280-2285.(in Chinese)

[4] Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research, 1973, 9(5):1314-1323.

[5] 乔卫国, 李大勇, 吴祥祖. 地铁联络通道冻结监测分析[J]. 岩土力学, 2003, 24(4):666-669. Qiao Weiguo, Li Dayong, Wu Xiangzu. Survey analysis of freezing method applied to connected aisle in metro tunnel[J]. Rock and Soil Mechanics, 2003, 24(4):666-669.(in Chinese)

[6] 胡向东, 陈锦, 汪洋, 等. 环形单圈管冻结稳态温度场解析解[J]. 岩土力学, 2013, 34(3):874-880. Hu Xiangdong, Chen Jin, Wang Yang, et al. Analytical solution to steady-state temperature field of single-circle-pipe freezing[J]. Rock and Soil Mechanics, 2013, 34(3):874-880.(in Chinese)

[7] 姜耀东, 赵毅鑫, 周罡, 等. 广州地铁超长水平冻结多参量监测分析[J]. 岩土力学, 2010, 31(1):158-164. Jiang Yaodong, Zhao Yixin, Zhou Gang, et al. Multi-parameter monitoring of frozen soil structure with super-long freezing hole drilling in Guangzhou metro[J]. Rock and Soil Mechanics, 2010, 31(1):158-164.(in Chinese)

[8] 王彦洋. 冻土的热参数与土冻结过程的热力耦合分析[D]. 天津:天津城建大学, 2015. Wang Yanyang. The analysis of thermal parameters for frozen soil and coupled thermal-stress for the process of soil freezing[D]. Tianjin:Tianjin Chengjian University, 2016.(in Chinese)

[9] 胡向东, 黄峰, 白楠. 考虑土层冻结温度时人工冻结温度场模型[J]. 中国矿业大学学报, 2008, 37(4):550-555. Hu Xiangdong, Huang Feng, Bai Nan. Models of artificial frozen temperature field considering soil freezing point[J]. Journal of China University of Mining & Technology, 2008, 37(4):550-555.(in Chinese)

[10] Leonid B, Regina B. A temperature behavior of frozen soils:field experiments and numerical solution[J]. Cold Regions Science and Technology, 2012, 79(8):84-91

[11] 芮易, 尹玫, 李晓军. 软土地层单排管冻土帷幕温度场分析[J]. 地下空间与工程学报, 2010, 6(2):260-265. Rui Yi, Yi Mei, Li Xiaojun. Analysis of temperature field of frozen soil curtain in soft soil with one row of pipes[J]. Chinese Journal of Underground Space and Engineering, 2000, 6(2):260-265.(in Chinese)

[12] 王晖, 李大勇, 李健, 等. 地铁联络通道冻结法施工三维数值模拟分析[J]. 地下空间与工程学报, 2011, 7(S2):1589-1593. Wang Hui, Li Dayong, Li Jian, et al. Analysis of 3D numerical simulation in ground freezing method for a cross passage of the subway[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(S2):1589-1593.(in Chinese)

[13] 靳巍巍, 陈有亮, 李磊, 等. 隧道联络通道冻结法施工三维有限元温度场分析[J]. 上海大学学报自然科学版, 2008, 14(1):85-90. Jin Weiwei, Chen Youliang, Li Lei, et al. FEM analysis of 3D temperature field in connection aisle between tunnels constructed using artificial freezing method[J]. Journal of Shanghai University Natural Science Edition, 2008, 14(1):85-90.(in Chinese)

[14] 商翔宇, 周国庆, 别小勇. 冻结土壤温度场数值模拟的改进[J]. 中国矿业大学学报, 2005, 34(2):179-183. Shang Xiangyu, Zhou Guoqing, Bie Xiaoyong. Numerical simulation improvement of freezing soil's temperature field[J]. Journal of China University of Mining & Technology, 2005, 34(2):179-183. (in Chinese)

[15] 谭龙, 韦昌富, 田慧会,等. 冻土未冻水含量的低场核磁共振试验研究[J]. 岩土力学, 2015, 36(6):1566-1572. Tan Long, Wei Changfu, Tian Huihui, et al. Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance[J]. Rock and Soil Mechanics, 2015, 36(6):158-164.(in Chinese)

[16] 李宁. 某地铁旁通道冻结法施工三维温度场数值计算研究[J]. 现代隧道技术, 2011, 48(1):94-98. Li Ning. 3D temperature field numerical simulation for freezing construction of a cross passage in metro[J]. Modern Tunnelling Technology, 2011, 48(1):94-98.(in Chinese)

[17] 胡俊,杨平. 大直径杯型冻土壁温度场数值分析[J]. 岩土力学, 2015,36(2):523-531. Hu Jun, Yang Ping. Numerical analysis of temperature field within large-diameter cup-shaped frozen soil wall[J].Rock and Soil Mechanics, 2015,36(2):523-531.(in Chinese)

[18] 张学富, 赖远明, 喻文兵, 等. 寒区隧道三维温度场数值分析[J]. 铁道学报, 2003, 25(3):84-90. Zhang Xuefu, Lai Yuanming, Yu Wenbing, et al. Numerical analysis for the 3D temperature fields in cold region tunnels[J]. Journal of the China Railway Society, 2003, 25(3):84-90.(in Chinese)

[19] 周家作, 韦昌富, 魏厚振,等. 线热源法测量冻土热参数的适用性分析[J]. 岩土工程学报, 2016, 38(4):681-687. Zhou Jiazuo, Wei Changfu, Wei Houzhen, et al. Applicability of line heat source method in measuring thermal parameters of frozen soil[J] Chinese Journal of Geote-chnical Engineering, 2016, 38(4):681-687.(in Chinese)

[20] 马田田, 韦昌富, 周家作,等. 土体的冻结特征曲线和持水特性[J]. 岩土工程学报, 2015, 37(s1):172-177. Ma Tiantian, Wei Changfu, Zhou Jiazuo, et al. Freezing characteristic curves and water retention characteristics of soils[J] Chinese Journal of Geotechnical Engineering, 2015, 37(s1):172-177.(in Chinese)

[21] Tsytovich H A. 冻土力学[M]. 张长庆,朱远林,译. 北京:科学出版社, 1985. Tsytovich H A. The mechanics of frozen ground[M]. Zhang Changqing, Zhu Yuanlin, trans. Beijing:Science Press, 1985.

[22] Yoshikawa K, Overduin P P. Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors[J]. Cold Regions Science and Technology, 2005, 42(3):250-256.

[23] 张涛, 杨维好, 韩涛, 等. 发泡材料隔热条件下单管局部冻结温度场研究[J]. 采矿与安全工程学报, 2015, 32(1):119-125. Zhang Tao,Yang Weihao,Han Tao, et al. Research on the single freezing pipe temperature field under the condition of foam material partial insulation[J]. Journal of Mining & Safety Engineering, 2015, 32(1):119-125.(in Chinese)