doi:

DOI: 10.3724/SP.J.1249.2017.02181

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2017/34:2 PP.181-187

Stability analysis of time-varying delaysystem based on an improved Lyapunov function


Abstract:
We provide a new delay-range-dependent criterion for interval time-varying delay linear systems. By using Jensen inequality method and reciprocally convex combination technique,the upper bound of the derivative of our improved Lyapunov function can be estimated more tightly. And then newless conservative stability criteria are derived. Numerical examples are given to illustrate the effectiveness and the improvementof the proposed criterion.

Key words:interval time-varying delay,reciprocally convex combination,linear matrix inequality,stability criteria,Lyapunov improved functional,Jensen integration

ReleaseDate:2017-04-10 18:10:20



[1] He Yong, Wang Qingguo, Lin Chong,et al.Delay-range-dependent stability for systems with time-varying delay[J].Automatica,2007,43(2):371-376.

[2] Zhu Xunlin, Yang Guanghong.New results of stability analysis for systems with time-varying delay[J].International Journal of Robust and Nonlinear Control,2010,20(5):596-606.

[3] Meng Xiangyu, Lam J, Du Baozhu,et al.A delay-partitioning approach to the stability analysis of discrete-time varying systems[J].Automatica,2010,46(3):610-614.

[4] Gu K Q.An integral inequality in the stability problem of time-delay systems[C]//Proceedings of the 39th IEEE Conferenceon Decisionand Control.Sydney,Australia:IEEE Conference on Decision & Control, 2000:2805-2810.

[5] Shao Hanyong. Improved delay-dependent stability criteria for systems with a delay varying in a range[J]. Automatica,2008,44(12):3215-3218.

[6] Shao Hanyong. New delay-dependent stability criteria for systems with interval delay[J]. Automatica,2009,45(3):744-749.

[7] Seuret A, Gouaisbaut F. Writinger-based integral inequality:application to time-delay systems[J].Automatica,2013,49(10):2860-2866.

[8] Sun Jian, Liu G P, Chen Jie, et al. Improved delay-range dependent stability criteria for linear systems with timevarying delays[J].Automatica,2010,46(2):466-470.

[9] Park P G, Ko J W, Jeong C. Reciprocally convex approach to stability of systems with time-varying delays[J]. Automatica,2011,47(1):235-238.

[10] Shao Hanyong. Further improvement on delay-dependent stability of results for linear systems with time-varying delays[C]//Proceedings of the 30th Chinese Control Conference.Yantai,China:China Academic Journal Publishing House,2011:1215-1218.

[11] Ge Chao, Hua Changchun, Guan Xinping.New delay-dependent stability criteria for neutral systems with time-varying delay using delay-decomposition approach[J]. International Journal of Control, Automation and Systems,2014,12(4):786-793.

[12] 张合新,惠俊军,周鑫,等.基于时滞分割法的区间变时滞不确定系统鲁棒稳定新判据[J].控制与决策,2014, 29(5):907-912. Zhang Hexin, Hui Junjun, Zhou Xin,et al. New robust stability criteria for uncertain systems with interval time-varying delay based on delay-partitioning approach[J].Control and Decision,2014,29(5):907-912.(in Chinese)

[13] 丁皓明.一类中立型时滞系统的相关稳定性[J].西南民族大学学报自然科学版,2015, 41(5):627-633. Ding Haoming.Stability of aclass of neutral delay systems[J].Journal of Southwest University for Nationalities Natrual Science Edition,2015,41(5):627-633.(in Chinese)

[14] 惠俊军,张合新,孔祥玉,等.混合变时滞不确定中立型系统鲁棒稳定性分析[J].控制与决策,2014(12):2259-2264. Hui Junjun, Zhang Hexin, Kong Xiangyu,et al.Stability analysis for uncertain neutral systems with mixed time-varying delays[J].Control and Decision,2014(12):2259-2264.(in Chinese)

[15] 张玉凤,周荣康.含混合常时滞的中立型系统稳定性[J].华侨大学学报自然科学版,2016, 37(3):386-390. Zhang Yufeng, Zhou Rongkang.Study on stability of neutral system with interval Time-Varying delay[J].Journal of Huaqiao University Natural Science,2016,37(3):386-390.(in Chinese)

[16] 李延波,薛小清.交互式凸组合法的混合时滞不确定中立系统的稳定性[J].控制与决策,2016, 31(6):1105-1110. Li Yanbo, Xue Xiaoqing.Stability of uncertain neutral system with mixed time delays based on reciprocally convex combination approach[J].Control and Decision,2016,31(6):1105-1110.(in Chinese)

[17] 薛小清,李延波,黄威.新的时变时滞不确定系统的稳定性判据.广西师范学院学报自然科学版,2014(2):18-22. Xue Xiaoqing, Li Yanbo, Huang Wei. A new method of stability criterionfor uncertain systems with time-varying delay[J].Journal of Guangxi Teachers Education University Natural Science Edition, 2014(2):18-22.(in Chinese)

[18] 张涛,邵诚,崔艳秋.区间时变时滞系统的时滞相关稳定性分析[J].电光与控制,2015(1):45-47, 58. Zhang Tao, Shao Cheng, Cui Yanqiu.Research on delay-dependent stability for systems with interval time-varying delay[J].Electronics Optics & Control,2015(1):45-47, 58.(in Chinese)

[19] 张世宇,王汝凉,柴瑶,等.一类中立型时变时滞系统的稳定性分析[J].广西师范学院学报自然科学版,2016, 33(3):25-30. Zhang Shiyu, Wang Ruliang, Chai Yao,et al.Stability analysis of a class of neutral time-varying delay systems[J].Journal of Guangxi Teachers Education University Natural Science Edition,2016,33(3):25-30.(in Chinese)

[20] 董海荣,耿志勇,黄琳.一类混合不确定时滞系统的鲁棒控制问题[J].北京大学学报自然科学版,2004, 40(5):760-765. Dong Hairong, Geng Zhiyong, Huang Lin.Robust control of time-delay systems with mixed uncertainties[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2004,40(5):760-765.(in Chinese)