DOI: 10.3724/SP.J.1249.2017.03290

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2017/34:3 PP.290-299

Classification methods for diabetic retinopathy fromretinal images

This paper reviews the existing automatic classification methods of diabetic retinopathy (DR). There are two kinds of methods for DR fundus image classification. One is based on local lesions, and the other is based on global image information. The former mainly detects some specific lesions, such as exudation, hemorrhage and microaneurysm, and then performs image classification according to the type, location and number of these lesions. The latter classifies fundus images using global image features. Besides, this paper summarizes commonly used public datasets, advantages and disadvantages of some classification algorithms and their performances. Although many research works have been focused on developing algorithms for automatically classifying DR fundus images, there are still many challenges to develop a universal computer-aided diagnosis system for automatic DR classification. The challenges include acquiring lots of high-quality DR fundus images, designing robust algorithms and improving the total performance of the system.

Key words:image processing,fundus images,diabetic retinopathy (DR),computer-aided diagnosis,automatic detection,image classification

ReleaseDate:2017-06-16 14:08:44

[1] Faust O,Acharya R,Ng E Y-K,et al.Algorithms for the automated detection of diabetic retinopathy using digital fundus images:a review[J].Journal of Medical Systems,2012,36(1):145-157.

[2] 陈福华.糖尿病视网膜病变的影响因素及护理对策[J].基层医学论坛,2008,12(3):96-98. C hen Fuhua. The influence factors and nursing strategy of diabetic retinopathy[J]. Public Medical Forum Magazine, 2008, 12(3): 96-98. (in Chinese)

[3] 苑 欣,哈 斯,张小杉,等.糖尿病视网膜病变辅助检查现状[J].转化医学杂志,2014,3(6):364-367. Yuan Xin, Ha Si, Zhang Xiaoshan, et al. The status of examination in diagnosis of diabetic retinopathy[J]. Translational Medicine Journal, 2014, 3(6): 364-367.(in Chinese)

[4] Sinthanayothin C,Kongbunkiat V,Phoojaruenchanachai S,et al. Automated screening system for diabetic retinopathy[C]//Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis.[S. l.]: IEEE,2003,2:915-920.

[5] Li Huiqi,Chutatape O.Fundus image features extraction[C]//Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago, USA: IEEE, 2000, 4: 3071-3073.

[6] Jaafar H F,Nandi A K,Al-Nuaimy W.Automated detection and grading of hard exudates from retinal fundus images[C]//The 19th European Signal Processing Conference. Barcelona, Spain: IEEE, 2011: 66-70.

[7] Haloi M, Dandapat S, Sinha R. A Gaussian scale space approach for exudates detection,classification and severity prediction[J]. Computer Science, 2015, 56(1): 3-6.

[8] Sánchez C I,García M,Mayo A,et al.Retinal image analysis based on mixture models to detect hard exudates[J].Medical Image Analysis,2009,13(4):650-658.

[9] Niemeijer M, Van Ginneken B, Russell S R, et al. Automated detection and differentiation of drusen,exudates,and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis[J].Investigative Ophthalmology & Visual Science,2007,48(5):2260-2267.

[10] Zhang Xiwei,Thibault G,Decencière E,et al.Exudate detection in color retinal images for mass screening of diabetic retinopathy[J].Medical Image Analysis,2014,18(7):1026-1043.

[11] Wang Huan, Hsu W, Goh K G, et al. An effective approach to detect lesions in color retinal images[C]//IEEE Conference on Computer Vision and Pattern Recognition. Hilton head island, USA: IEEE,2000: 181-186.

[12] Hunter A,Lowell J,Owens J,et al.Quantification of diabetic retinopathy using neural networks and sensitivity analysis[M]//Artificial Neural Networks in Medicine and Biology. London: Springer, 2000: 81-86.

[13] Walter T,Massin P,Erginay A, et al. Automatic detection of microaneurysms in color fundus images[J].Medical Image Analysis, 2007, 11(6): 555-566.

[14] Fleming A D, Philip S, Goatman K A, et al. Automated detection of exudates for diabetic retinopathy screening[J]. Physics in Medicine and Biology, 2007, 52(24): 7385-7396.

[15] Osareh A,Mirmehdi M,Thomas B,et al.Comparative exudate classification using support vector machines and neural networks[C]//Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer Berlin Heidelberg, 2002, 2489: 413-420.

[16] Zhang Xiaohui,Chutatape A.Detection and classification of bright lesions in color fundus images[C]//International Conference on Image Processing. Singapore: IEEE, 2004, 1: 139-142.

[17] Bharali P,Medhi J P,Nirmala S R.Detection of hemorrhages in diabetic retinopathy analysis using color fundus images[C]//IEEE 2nd International Conference on Recent Trends in Information Systems. Kolkata, India: IEEE, 2015: 237-242.

[18] Sinthanayothin C, Boyce J F, Williamson T H, et al. Automated detection of diabetic retinopathy on digital fundus images[J]. Diabetic Medicine, 2002, 19(2): 105-112.

[19] Usher D, Dumskyj M, Himaga M, et al. Automated detection of diabetic retinopathy in digital retinal images:a tool for diabetic retinopathy screening[J]. Diabetic Medicine, 2004, 21(1): 84-90.

[20] Gardner G G, Keating D, Williamson T H, et al. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool[J]. British Journal of Ophthalmology, 1996, 80(11): 940-944.

[21] Goldbaum M, Moezzi S, Taylor A, et al. Automated diagnosis and image understanding with object extraction, object classification,and inferencing in retinal images[C]//International Conference on Image Processing. Lausanne, Switzerland: IEEE, 1996, 3: 695-698.

[22] Ege B M,Hejlesen O K,Larsen O V,et al.Screening for diabetic retinopathy using computer based image analysis and statistical classification[J].Computer Methods and Programs in Biomedicine, 2000, 62(3): 165-175.

[23] Zhang Xiaohui, Chutatape O. Top-down and bottom-up strategies in lesion detection of background diabetic retinopathy[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington: IEEE, 2005, 2: 422-428.

[24] Jalli P Y I,Hellstedt T J,Immonen I J R.Early versus late staining of microaneurysms in fluorescein angiography[J]. Retina, 1997, 17(3): 211-215.

[25] Bernardes R, Nunes S, Pereira I, et al. Computer-assisted microaneurysm turnover in the early stages of diabetic retinopathy[J]. Ophthalmologica, 2009, 223(5): 284-291.

[26] Baudoin C, Maneschi F, Quentel G, et al. Quantitative evaluation of fluorescein angiograms:microaneurysm counts[J]. Diabetes, 1983, 32(S2): 8-13.

[27] Hipwell J H, Strachan F, Olson J A, et al. Automated detection of microaneurysms in digital red-free photographs: a diabetic retinopathy screening tool[J]. Diabetic Medicine, 2000, 17(8): 588-594.

[28] Datta N S, Dutta H S, Majumder K. Brightness-preserving fuzzy contrast enhancement scheme for the detection and classification of diabetic retinopathy disease[J].Journal of Medical Imaging, 2016, 3(1): 014502.

[29] Haloi M. Improved microaneurysm detection using deep neural networks[EB/OL]. (2015-05-17)[2016-07-17].

[30] Quellec G, Lamard M, Josselin P M, et al. Optimal wavelet transform for the detection of microaneurysms in retina photographs[J]. IEEE Transactions on Medical Imaging, 2008, 27(9): 1230-1241.

[31] Rocha A, Carvalho T, Jelinek H F, et al. Points of interest and visual dictionaries for automatic retinal lesion detection[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(8): 2244-2253.

[32] Pires R, Carvalho T, Spurling G, et al. Automated multi-lesion detection for referable diabetic retinopathy in indigenous health care[J]. PLOS ONE, 2015, 10(6): e0127664.

[33] Antal B, Hajdu A. An ensemble-based system for automatic screening of diabetic retinopathy[J]. Knowledge-Based Systems, 2014, 60: 20-27.

[34] Pratt H, Coenen F, Broadbent D M, et al. Convolutional neural networks for diabetic retinopathy[J]. Procedia Computer Science, 2016, 90: 200-205.

[35] Solanki M S. Diabetic retinopathy detection using eye images[R]. Kanpur, Indian: Indian Institute of Technology Kanpur 2015.

[36] van Grinsven M J J P, van Ginneken B, Hoyng C B, et al. Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1273-1284.