DOI: 10.3724/SP.J.1249.2018.05444

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2018/35:5 PP.444-452

The behaviors of concrete-filled elliptical hollow section steel stub columns under different interface states

In order to analyze the influence of interface states on the mechanical properties of concrete-filled elliptical hollow section (EHS) steel stub columns subjected to axial compression, a constitutive model of three typical interface states, such as debonding, bonding slip and complete bonding, is constructed and numerically simulated by ABAQUS. In engineering applications, there are three typical load-bearing modes of elliptical-filled steel tubular concrete members, loading through the whole cross section, loading through steel only and loading through concrete only. Therefore, few nonlinear finite element models are established to analyze interfacial stress, sectional compressive stress, ultimate bearing capacity and axial stiffness. The results show that the mechanical behaviors of concrete-filled EHS steel stub columns loading through concrete only and loading through steel only are significantly affected by interface states. The stronger the interfacial bonding is, the more load the steel tube or concrete could share, and the stronger the ability of the members to resist deformation is. The interface state has no effect on mechanical behavior of concrete-filled EHS steel stub columns loading through the whole cross section of steel and concrete.

Key words:bridge engineering,concrete-filled steel tube,elliptical hollow section,interface state,loading model,stub column,finite element analysis

ReleaseDate:2018-12-14 06:52:38

[1] 孙波,童乐为.椭圆钢管柱受压性能研究进展[J].建筑科学与工程学报,2013,30(2):76-81. SUN Bo, TONG Lewei. Research development of compression properties of elliptical hollow section columns[J]. Journal of Architecture and Civil Engineering,2013,30(2):76-81.(in Chinese)

[2] 刘爱荣,肖博政,黄永辉,等.界面状况对哑铃型钢管混凝土拱承载能力的影响[J].广州大学学报自然科学版,2015,14(1):56-60. LIU Airong, XIAO Bozheng, HUANG Yonghui, et al. Effect of interface condition on the bearing capacity of dumbbel-shaped CFST arch bridge[J].Journal of Guangzhou University Natural Science, 2015,14(1):56-60.(in Chinese)

[3] 刘永健,池建军. 钢管混凝土界面抗剪黏结强度的推出试验[J]. 工业建筑, 2006,36(4):78-80. LIU Yongjian, CHI Jianjun. Push-out test on shear bond strength of CFST[J].Industrial Architecture, 2006,36(4):78-80.(in Chinese)

[4] 刘永健,刘君平,郭永平,等. 钢管混凝土界面黏结滑移性能[J]. 长安大学学报自然科学版, 2007,27(2):53-57.(in Chinese) LIU Yongjian, LIU Junping,GOU Yongping, et al. Bond-slip mechanics behaviors of structures CFST[J]. Journal of Chang'an University Natural Science, 2007, 27(2):53-57.(in Chinese)

[5] 刘永健,刘君平,池建军. 钢管混凝土界面抗剪黏结滑移力学性能试验[J]. 广西大学学报自然科学版. 2010,35(1):17-23. LIU Yongjian, LIU Junping, CHI Jianjun. Shear bond behaviors at interface of CFST[J]. Journal of Guangzhou University Natural Science, 2010, 35(1):17-23.(in Chinese)

[6] 姜绍飞,韩林海,乔景川. 钢管混凝土中钢与混凝土黏结问题初探[J]. 哈尔滨建筑大学学报, 2000,33(2):24-28. JIANG Shaofei, HAN Linhai, QIAO Jingchuan. Initial discussion on the bond problems of steel and concrete in CFST[J]. Journal of Harbin University of Civil Engineering and Architecture, 2000, 33(2):24-28.(in Chinese)

[7] 仵建斌. 方钢管混凝土结构黏结滑移基本性能研究[D]. 西安:西安建筑科技大学, 2011. WU Jianbin. Study on the performance of bond-slip between steel shape and concrete in CFSST structure[J]. Xi'an:Xi'an University of Architecture and Technology, 2011.(in Chinese)

[8] 蔡绍怀. 现代钢管混凝结构[M].北京:人民交通出版社, 2003:11-30. CAI Shaohuai. Modern concrete filled steel structure[M]. Beijing:China Communications Press, 2003:11-30.(in Chinese)

[9] 韩林海. 钢管混凝土结构:理论与实践[M]. 北京:科学出版社, 2004:101-217. HAN Linhai. Concrete filled steel tubular structures:theory and practice[M]. Beijing:Science Press,2004:101-217.(in Chinese)

[10] YANG H, LAM D, GARDNER L. Testing and analysis of concrete-filled elliptical hollow sections[J]. Engineering Structures, 2008, 30(12):3771-3781.

[11] 于学增.考虑黏结状态的方钢管混凝土结构性能研究[D]. 天津:天津大学, 2007. YU Xuezeng. Research on behavior of square CFST structure considering bond states[D]. Tianjin:Tianjin University.2007.(in Chinese)

[12] 王玉银,张素梅,郭兰慧. 受荷方式对钢管混凝土轴压短柱力学性能影响[J]. 哈尔滨工业大学学报, 2005, 37(1):40-44. WANG Yuyin,ZHANG Sumei,GUO Lanhui. Influence of load conditions on mechanical behaviors of CFST stub columns subjected to axial compression[J].Journal of Harbin Institute of Technology, 2005, 37(1):40-44.(in Chinese)

[13] LIU J, ZHOU X, GAN D. Effect of friction on axially loaded stub circular tubed columns[J]. Advances in Structural Engineering, 2016, 19(3):546-559.

[14] GB50017-2003钢结构设计规范[S]. GB50017-2003 Code for design of steel structure[S].(in Chinese)

[15] GB 50010-2010混凝土结构设计规范[S]. GB 50010-2010 Code for design of concrete structures[S].(in Chinese)

[16] 丁发兴,付磊,龚永智,等.方钢管混凝土轴压短柱的力学性能研究[J].深圳大学学报理工版,2014,31(6):583-592. DING Faxing, FU Lei, GONG Yongzhi, et al. Behavior of concrete-filled square steel tubular stub columns under axially compressive loading[J]. Journal of Shenzhen University Science and Engineering,2014, 31(6):583-592.(in Chinese)

[17] 程高,刘永健,田智娟,等.PBL加劲型矩形钢管混凝土不等宽T型节点受拉性能[J].长安大学学报自然科学版,2015,35(3):83-90. CHENG Gao, LIU Yongjian,TIAN Zhijuan, et al. Tensile behavior of PBL stiffened concrete-filled rectangular steel tubular unequal T-connections[J]. Chang'an University Natural Science Edition, 2015,35(3):83-90.(in Chinese)