doi:

DOI: 10.3724/SP.J.1249.2019.01052

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2019/36:1 PP.52-60

Performance of bearing capacity and analysis of design parameters of buried pipelines with geogrid protection


Abstract:
In order to study the effect of parameters related with geogrid and surrounding soil of pipes on the performance of buried pipes reinforced by geogrids, the comprehensive analysis based on finite element method is carried out to investigate the effect of internal frictional angle of soil, embedment depths of geogrids, the buried depth of pipes, and width of loading plate on mechanical and deformation performances of the pipeline. The numerical results show that the ultimate bearing capacity of buried pipes increases remarkably with the increase of internal frictional angle. Optimum reinforcement effect can be obtained when buried depth equals to one fifth of the width of loading plate. Increasing buried depth of pipe can promote the ultimate bearing capacity evidently and alleviate deformation of pipes. Failure mode of buried pipes will change from deformation failure of pipe to foundation failure with the decrease of width of loading plate, and the ultimate bearing capacity will decrease. The effect of grid reinforcement is closely related to the change of the ultimate deformation of buried pipes. The ratio of ultimate bearing capacity of pipeline with grid reinforcement to that of pipeline without reinforcement decreases with the increase of frictional angle and buried depth and increases first and then decreases with increase of loading width.

Key words:geotechnical engineering,buried pipes,geogrid,ultimate bearing capacity,failure mode,static loading,numerical simulation

ReleaseDate:2019-01-28 09:56:34



[1] 王占杰. 中国塑料管道行业现状及发展趋势[J]. 中国塑料, 2010, 24(1):1-5. WANG Zhanjie. Situation and development trend of plastics pipe industry in China[J]. China Plastics, 2010, 24(1):1-5.(in Chinese)

[2] 梁永宽, 杨馥铭, 尹哲祺, 等. 油气管道事故统计与风险分析[J]. 油气储运, 2017, 36(4):472-476. LIANG Yongkuan, YANG Fuming, YIN Zheqi, et al. Accident statistics and risk analysis of oil and gas pipelines[J]. Oil & Gas Storage and Transportation, 2017, 36(4):472-476.(in Chinese)

[3] 姜学红, 陈家琪. 塑料土工格栅的性能及应用[J]. 工程塑料应用, 2005, 33(3):50-52. JIANG Xuehong, CHEN Jiaqi. Performance and application of plastics geogrid[J]. Engineering Plastics Application, 2005, 33(3):50-52.(in Chinese)

[4] SELVADURAI A P S. Enhancement of the uplift capacity of buried pipelines by the use of geogrids[J]. Geotechnical Testing Journal, 1989, 12(3):211-216.

[5] COREY R, HAN J, KHATRIi D K, et al. Laboratory study on geosynthetic protection of buried steel-reinforced HDPE pipes from static loading[J]. Journey of Geotechnical and Geoenvironmental Engineering, 2014, 140(6):04014091.

[6] HEGDE A M, SITHARAM T G. Experimental and numerical studies on protection of buried pipelines and underground utilities using geocells[J]. Geotextiles and Geomembranes, 2015, 43(5):372-381.

[7] 肖成志, 杨亚欣, 杨爱克, 等. 静载作用下土工格栅加筋防护埋地管道力学性能的实验研究[J]. 岩石力学与工程学报, 2015, 34(9):1928-1937. XIAO Chengzhi, YANG Yaxin, YANG Aike, et al. Mechanical performance of buried pipes protected by geogrids under static load[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9):1928-1937.(in Chinese)

[8] 肖成志, 王嘉勇, 杨亚欣, 等. 土工格栅防护埋地HDPE管道的变形与力学性能[J]. 西南交通大学学报自然科学版,2017, 52(1):38-45. XIAO Chengzhi, WANG Jiayong, YANG Yaxin, et al. Deformation and mechanical performance of buried HDPE pipes reinforced by geogrids[J]. Journal of Southwest Jiaotong University Natural Science, 2017, 52(1):38-45.(in Chinese)

[9] AASHTO-1998 LRFD bridge design specifications[S].

[10] GB50007-2011建筑地基基础设计规范[S]. GB50007-2011 Code for design of building foundation[S].(in Chinese)

[11] CECS 164-2004埋地聚乙烯排水管管道工程技术规程[S]. CECS164-2004 Technical specification for buried PE pipeline of sewer engineering[S].(in Chinese)

[12] GB50332-2002给排水水工程管道结构设计技术规范[S]. GB50332-2002 Structural design code for pipelines water supply and waste water engineering[S].(in Chinese)

[13] 杜金龙,杨敏.深基坑开挖对邻近地埋管线影响分析[J]. 岩石力学与工程学报,2009,28(1):3015-3020. DU Jinlong, YANG Min. Influence analysis of excavation of deep pit on adjacent buried pipelines[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1):3015-3020.(in Chinese)

[14] 郭婷婷. EPS板在上埋式涵洞土压力减荷中的应用与分析[J].水利水电科技进展,2011,31(1):74-78. GUO Tingting. Application of EPS blocks in load reduction of earth pressures on culverts under high-stacked soil[J]. Advances in Science and Technology of Water Resources, 2011, 31(1):74-78.(in Chinese)

[15] 边学成,申文明,马祖桥, 等. 不同填土管涵土压力模型试验和数值模拟研究[J].土木工程学报,2012, 45(1):127-133. BIAN Xuecheng, SHEN Wenming, MA Zuqiao, et al. Model test and numerical simulation of earth pressure on under different earth backfill conditions[J]. Chinese Civil Engineering Journal, 2012, 45(1):127-133.(in Chinese)

[16] 陈保国,骆瑞萍,孙金山.上埋式盖板涵受力特性及影响因素研究[J].岩土力学,2011,32(1):199-206. CHEN Baoguo, LUO Ruiping, SUN Jinshan. Study of stress characteristics and its influencing factors of embankment installation slab-culverts[J]. Rock and Soil Mechanics, 2011, 32(1):199-206.(in Chinese)

[17] 李广信.关于土工合成材料加筋设计的若干问题[J].岩土工程学报,2013,35(4):605-610. LI Guangxin. Some problems in design of geosynthetic-reinforced soil structures[J]. Chinese journal of Geotechnical Engineering, 2013, 35(4):605-610.(in Chinese)

[18] 周志刚, 李雨舟. 基于土工格栅黏弹特性的加筋土本构模型研究[J].岩石力学与工程学报, 2011, 30(4):850-857. ZHOU Zhigang, LI Yuzhou. Research on constitutive model of reinforced soil considering viscoelasticity of geogrids[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4):850-857.(in Chinese)

[19] 周敏,杜延军,张亚军,等.埋地HDPE管道施工过程中土拱效应变化特征研究[J].岩石力学与工程学报,2015,34(2):414-424. ZHOU Min, DU Yanjun, ZHANG Yajun, et al. Variation of soil arching effect during burying process of HDPE pipes[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2):414-424.(in Chinese)