doi:

DOI: 10.3724/SP.J.1249.2019.02128

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2019/36:2 PP.128-134

A staggered double vane slow wave structure of 0.24 THz sheet beam travelling wave tube


Abstract:
High power and broad bandwidth are two core targets for a terahertz amplifier. A sheet beam travelling wave tube based on a staggered double vane slow wave structure possesses the two advantages mentioned above and is a very competitive high power terahertz amplifier. The dispersion characteristic, coupling impedance property, transmission and reflection properties and beam wave interaction property are investigated. The tube achieves high output power in a very broad frequency range by optimizing the structural parameters and introducing a dielectric attenuator. Simulation results show that the tube can generate the output power of more than 105 W in the frequency range from 220 GHz to 260 GHz. This work has laid a good foundation for the study of terahertz amplifiers with broad bandwidth and high power.

Key words:vacuum electronics,terahertz,travelling wave tube,staggered vane slow wave structure,broad bandwidth,high power

ReleaseDate:2019-12-02 09:24:37



[1] BOOSKE J H, DOBBS R J, JOYE C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1):54-75.

[2] 洪伟,余超,陈继新,等.毫米波与太赫兹技术[J].中国科学:信息科学,2016, 46(8):1086-1107. HONG Wei, YU Chao, CHEN Jixin, et al. Millimeter wave and terahertz technology[J]. Science China Information Sciences, 2016, 46(8):1086-1107.(in Chinese)

[3] BAIG A, GAMZINA D, KIMURA T, et al. Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier[J]. IEEE Transactions on Electron Devices, 2017, 64(5):2390-2397.

[4] JOYE C D, CALMAE J P, GAREN M, et al. UV-LIGA microfabrication of 220 GHz sheet beam amplifier gratings with SU-8 photoresists[J]. Journal of Micromechanics and Microengineering, 2010, 20(12):125016.

[5] PERSHING D E, NGUYEN K T, ABE D K, et al. Demonstration of a wideband 10-kW Ka-band sheet beam TWT amplifier[J]. IEEE Transactions on Electron Devices, 2014, 61(6):1637-1642.

[6] GUO Guo, WEI Yanyu, YUE Lingna, et al. A research of W-band folded waveguide traveling wave tube with elliptical sheet electron beam[J]. Physics of Plasmas, 2012, 19(9):093117.

[7] ZHAO Jinfeng, GAMZINA D, LI Na, et al. Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun[J]. IEEE Transactions on Electron Devices, 2012, 59(6):1792-1798.

[8] RUAN Cunjun, ZHANG Huafeng, TAO Jian, et al. Investigation on stability of the beam-wave interactions for G-band staggered double vane TWT[C]//The 43rd International Conference on Infrared, Millimeter, and Terahertz Waves. Nagoya, Japan:IEEE, 2018:1-2.

[9] WANG Jianxun, SHU Guoxiang, LIU Guo, et al. Ultra-wideband coalesced-mode operation for a sheet-beam traveling-wave tube[J]. IEEE Transactions Electron Devices, 2016, 63(1):504-511.

[10] SHI Xianbo, WANG Zhanliang, TANG Tao, et al. Theoretical and experimental research on a novel small tunable PCM system in staggered double vane TWT[J]. IEEE Transactions on Electron Devices, 2015, 62(12):4258-4263.

[11] SHU Guoxiang, WANG Jianxun, LIU Guo, et al. An improved slow-wave structure for the sheet-beam traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2016, 63(5):2089-2096.

[12] SHU Guoxiang, WANG Jianxun, LIU Guo, et al. Study of performance improvement for a Q-band sheet-beam traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2018, 65(9):3970-3975.

[13] RUAN Cuncun, ZHANG Muwu, DAI Jun, et al. W-Band multiple beam staggered double-vane traveling wave tube with broad band and high output power[J]. IEEE Transactions on Plasma Science, 2015, 43(7):2132-2139.

[14] SHU Guoxiang, LIU Guo, QIAN Zhengfang. Simulation study of a high-order mode terahertz radiation source based on an orthogonal grating waveguide and multiple sheet electron beams[J]. Optics Express, 2018, 26(7):8040-8048.

[15] ZHANG Yabin, WANG Zhanliang, ZHOU Qing, et al. A high-power single rectangular grating sheet electron beam traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2016, 63(8):3262-3269.

[16] LU Zhigang, SU Zhicheng, WEI Yanyu. Design and cold test of period-tapered double-ridge-loaded folded waveguide slow wave structure for Ka band TWTs[J]. AIP Advances, 2018, 8(5):055105.

[17] HU Linlin, SONG Rui, MA Guowu, et al. Experimental demonstration of a 0.34-THz backward-wave oscillator with a sinusoidally corrugated slow-wave structure[J]. IEEE Transactions on Electron Devices, 2018, 65(6):2149-2155.

[18] CARLSTEN B E, RUSSELL S J, LAWRENCE M. Technology development for a mm-wave sheet beam traveling-wave tube[J]. IEEE Transactions on Plasma Science, 2005, 33(1):85-93.

[19] 郑源. 交错双栅带状注行波管的研究与设计[D]. 成都:电子科技大学,2017. ZHENG Yuan. Research and design of staggered double grating sheet beam traveling wave tubes[D]. Chengdu:University of Electronic Science and Technology of China, 2017.(in Chinese)

[20] ZHENG Yuan, GAMZINA D, LUHMANN N C. 0.2-THz dual mode sheet beam traveling wave tube[J]. IEEE Transactions on Electron Devices, 2014, 64(4):1767-1773.