doi:

DOI: 10.3724/SP.J.1249.2019.02135

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2019/36:2 PP.135-139

Design of electron optics system for 0.5 THz backward wave oscillator


Abstract:
Electron optics system (EOS) is an important part of a vacuum electronic device (VED) which includes electron gun, focusing system, and collector. The characteristics of focusing and transmission of electron beam in the EOS can affect the performances of VED, such as power, gain and bandwidth of device, etc. In this paper, we design the EOS for 0.5 THz backward wave oscillator (BWO), and describe the design procedures of the electron gun and the uniform permanent magnetic focusing system in detail. Firstly, based on the results of particle-in-cell (PIC) simulation, we design the electron gun which is satisfied with the required current amplitude and with good beam quality. Secondly, combined with the theoretical analysis, we devise the structure of uniform permanent magnetic focusing system matching the electron beam. The optimum parameters of EOS are as follows:the current emitted from the surface of cathode is greater than 100 mA at the operating voltage 23 kV, the length and diameter of the drift tube are 26 mm and 0.2 mm, respectively.

Key words:terahertz,electron optics system,passing rate of electron beam,electron gun,cathode,permanent magnetic focusing system

ReleaseDate:2019-12-02 09:24:37



[1] 何明霞,陈涛.太赫兹科学技术在生物医学中的应用研究[J].电子测量与仪器学报,2012, 26(6):471-483. HE Mingxia, CHEN Tao. Application of terahertz science and technology in biology and medicine research[J]. Journal of Electronic Measurement and Instrument, 2012, 26(6):471-483.(in Chinese)

[2] 郑新,刘超.太赫兹技术的发展及在雷达和通讯系统中的应用(Ⅱ)[J].微波学报,2011, 27(1):1-5. ZHENG Xin, LIU Chao. Recent development of THz technology and its application in radar and communication system[J]. Journal of Microwaves, 2011, 27(1):1-5.(in Chinese)

[3] 戚祖敏.太赫兹波在军事领域中的应用研究[J].红外,2008(12):1-4. QI Zumin. Study of application of THz wave in military field[J]. Infrared, 2008(12):1-4.(in Chinese)

[4] BASTEN M A, TUCEK J C, GALLAGHER D A, et al. 233 GHz high power amplifier development at Northrop Grumman[C]//IEEE International Vacuum Electronics Conference (IVEC). Monterey, USA:IEEE, 2016:1-2.

[5] 傅文杰,关晓通,陈驰,等. 220 GHz高功率同轴谐振腔回旋管[J]. 红外与毫米波学报, 2014, 33(6):613-618. FU Wenjie, GUAN Xiaotong, CHEN Chi, et al. A 220 GHz high-power coaxial cavity gyrotron[J]. Journal of Infrared and Millimeter Waves, 2014, 33(6):613-618.(in Chinese)

[6] 丁耀根.大功率速调管的设计制造和应用[M].北京:国防工业出版社,2010:133-145. DING Yaogen. Design manufacture and application of high power klystron[M]. Beijing:National Defense Industry Press, 2010:133-145.(in Chinese)

[7] VLIEKS A E. Breakdown phenomena in high-power klystrons[J]. IEEE Transactions on Electrical Insulation, 1989, 24(6):1023-1028.

[8] FUKUDA S, HAYASHI K, MAEDA S, et al. Performance of a high-power klystron using a BI cathode in the KEK electron linac[J]. Applied Surface Science, 1999, 146(1/2/3/4):84-88.

[9] LEE T G, KONRAD G T, OKAZAKI Y, et al. The design and performance of a 150-MW klystron at S-Band[J]. IEEE Transactions on Plasma Science, 1985, 13(6):545-552.

[10] GILMOUR A S Jr. 速调管、行波管、磁控管、正交场放大器和回旋管[M].丁耀根,张兆传, 等, 译. 北京:国防工业出版社,2012:97. GILMOUR A S Jr. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons[M]. DING Yaogen, ZHANG Zhaochuan, et al. transl. Beijing:National Defense Industry Press, 2012:97.(in Chinese)

[11] 丁耀根.大功率速调管的理论与计算模拟[M].北京:国防工业出版社, 2008:174-176. DING Yaogen. Theory and computer simulation of high power klystron[M]. Beijing:National Defense Industry Press, 2008:174-176.(in Chinese)