doi:

DOI: 10.3724/SP.J.1249.2019.02162

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2019/36:2 PP.162-169

Terahertz frequency coding metasurface


Abstract:
We propose a terahertz frequency coding metasurface based on T-shaped structure. It is composed of four kinds of coding metasurface cells with the same initial phase value and different phase sensitivity. Based on the pre-designed coding sequence, 1 bit, 2 bit periodic and non-periodic terahertz frequency coding metasurfaces are realized. By changing the working frequency, terahertz wave radiation energy can be effectively controlled without redesigning the coding metasurface cell. The theoretical calculation results are in good agreement with the simulation results. The designed terahertz frequency coding metasurface has a good dispersion effect on the main lobe energy of the reflected terahertz wave and effectively reduces the radar scattering cross section. Our device has great application value in the terahertz wave stealth.

Key words:nonlinear optics,terahertz wave,frequency coding metasurface,terahertz manipulation,phase sensitivity,energy radiation

ReleaseDate:2019-12-02 09:24:38



[1] LI Peining, LEWIN M, KRETININ A V, et al. Hyperbolic phonon-polaritons in Boron nitride for near-field optical imaging and focusing[J]. Nature Communications, 2015, 6:7507.

[2] LU Jian, LI Xian, SKORUPSKⅡ G, et al. Rapid and precise determination of absolute zero-field splittings by terahertz time-domain electron paramagnetic resonance spectroscopy[J]. Chemical Science, 2017, 8(11):7312.

[3] ZHANG Xicheng, SHKURINOV A, ZHANG Yan. Extreme terahertz science[J]. Nature Photonics, 2017, 11(1):16-18.

[4] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402.

[5] TAO H, LANDY N, BINGHAM C, et al. A metamaterial absorber for the terahertz regime:design, fabrication and characterization[J]. Optics Express, 2008, 16(10):7181-7188.

[6] GAO Xi, HAN Xu, CAO Weiping, et al. Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8):3522-3530.

[7] CHEN Houtong, PADILLA W J, CICH M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics, 2009, 3(3):148-151.

[8] MENDIS R, NAG A, CHEN F, et al. A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides[J]. Applied Physics Letters, 2010, 97(13):131106.

[9] CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science & Applications, 2014, 3(10):e218.

[10] GAO Lihua, CHENG Qiang, YANG Jing, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light:Science & Applications, 2015, 4(9):e324.

[11] LIANG Lanju, WEI Minggui, YAN Xin, et al. Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies[J]. Scientific Reports, 2016, 6:39252.

[12] LI Jiusheng, ZHAO Zejiang, YAO Jianquan. Flexible manipulation of terahertz wave reflection using polarization insensitive coding metasurfaces[J]. Optics Express, 2017, 25(24):29983-29992.