doi:

DOI: 10.3724/SP.J.1249.2019.02182

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2019/36:2 PP.182-188

Terahertz adjustable metasurface structure based on vanadium dioxide thin film


Abstract:
Based on the insulation-metal phase transition characteristics of vanadium dioxide thin films, an metasurface-based electronically controlled terahertz modulation device is designed and fabricated on a high-resistance silicon substrate. The transmission and electronically controlled tunable characteristics of the metasurface in the terahertz frequency range are studied. The experimental results show that when the terahertz wave is perpendicular to the surface of the tunable metasurface device, the transmission line of the device reaches the highest peak at 0.31 THz. And when the voltage increases from 0 V to 8 V, the transmission rate of the device significantly decreases, and the lowest peak value is at 0.41 THz. The modulation depth can be up to 59% in the entire band of 0.2-0.6 THz. By controlling the applied voltage, the device can switch freely between two resonant states with a large difference in transmittance. The experimental results are of great significance for the research and development of terahertz tunable metasurface.

Key words:electromagnetic field and electromagnetic waves,terahertz,tunable metasurface,amplitude modulation,phase-change material,vanadium dioxide,silicon substrate

ReleaseDate:2019-12-02 09:24:38



[1] HE Jingwen, WANG Sen, ZHANG Yan. Terahertz beam shaping with metasurface[C]//International Conference on Infrared, Millimeter-wave, and Terahertz Technology. Beijing:SPIE, 2016:1003019.

[2] SHIN J H, MOON K, LEE E S, et al. Metal-VO2 hybrid grating structure for a terahertz active switchable linear polarizer[J]. Nanotechnology, 2015, 26(31):315203.

[3] YAHIAOUI R, OUSLIMANI H H. Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber[J]. Journal of Applied Physics, 2017, 122(9):093104.

[4] ZHAO Jingcheng, CHENG Yongzhi, CHENG Zhengze. Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves[J]. IEEE Photonics Journal, 2018, 10(1):1-10.

[5] ORAZBAYEV B, ESTAKHRI N M, BERUETE M, et al. Terahertz carpet cloak based on a ring resonator metasurface[J]. Physical Review B, 2015, 91(19):195444.

[6] HASHEMI M, MOAZAMI A, NASERPOUR M, et al. A broadband multifocal metalens in the terahertz frequency range[J]. Optics Communications, 2016, 370:306-310.

[7] CHEN Long, QU Shiwei, CHEN Baojie, et al. Terahertz metasurfaces for absorber or reflectarray applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1):234-241.

[8] HAO L Y, ZHOU X J, YANG Z B, et al. A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide[J]. Applied Physics Letters, 2016, 109(23):233503.

[9] 熊瑛,文岐业,田伟,等.硅基二氧化钒相变薄膜电学特性研究[J].物理学报,2015, 64(1):017101. XIONG Ying, WEN Qiye, TIAN Wei, et al. Researches on the electrical properties of vanadium oxide thin films on Si substrates[J]. Acta Physica Sinica, 2015, 64(1):017101.(in Chinese)

[10] ZHOU Gaochao, DAI Penghui, WU Jingbo, et al. Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface[J]. Optics Express, 2017, 25(15):17322-17328.

[11] XU Hexiu, SUN Shulin, TANG Shiwei, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J].Scientific Reports, 2016, 6:27503.

[12] KIM H, CHARIPAR N, BRECKENFELD E, et al. Active terahertz metamaterials based on the phase transition of VO2 thin films[J]. Thin Solid Films, 2015, 596:45-50.

[13] 刘志强,常胜江,王晓雷,等.基于VO2薄膜相变原理的温控太赫兹超材料调制器[J].物理学报,2013, 62(13):158-163. LIU Zhiqiang, CHANG Shengjiang, WANG Xiaolei, et al. Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film[J]. Acta Physica Sinica, 2013, 62(13):158-163.(in Chinese)

[14] CUI Tiejun, SMITH D, LIU Ruopeng. Metamaterials:theory, design, and applications[M]. New York:Springer, 2009:1-367.

[15] NASHIMA S, MORIKAWA O, TAKATA K, et al. Measurement of optical properties of highly doped Silicon by terahertz time domain reflection spectroscopy[J]. Applied Physics Letters, 2001, 79(24):3923-3925.