DOI: 10.3724/SP.J.1249.2019.02193

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2019/36:2 PP.193-199

Advances in intense terahertz time-domain spectrometry

With the rapid development of terahertz (THz) generation technology, the front subjects such as terahertz nonlinear spectroscopy, the interaction between extreme terahertz intense field and matter have emerged. Therefore, the development of the intense terahertz time-domain spectroscopy technology has become one of the most important requirements in terahertz technology. The technology needs to have the characteristics of single-shot measurement ability and large dynamic range. This paper reviews the research progress and presents some comments on the features and the trend of intense terahertz time-domain detection.

Key words:ultrafast laser,terahertz pulses,time-domain spectroscopy,electro-optic sampling,signal-noise ratio,measurable dynamical range

ReleaseDate:2019-12-02 09:24:38

[1] HU B B, NUSS M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16):1716-1718.

[2] SAEEDKIA D. Handbook of terahertz technology for imaging, sensing and communications[M]. Witney:Woodhead Publishing, 2013.

[3] 潘新建. 新型太赫兹时域光谱电光取样技术及瞬态成像的研究[D]. 深圳:深圳大学, 2018. PAN Xinjian. Research on a new electro-optic sampling technique of THz-TDS and it's transient imaging[D]. Shenzhen:Shenzhen University, 2018.(in Chinese)

[4] SON J H. Challenges and opportunities in terahertz biomedical imaging[C]//The 40th International Conference on Infrared, Millimeter, and Terahertz Waves. Hong Kong, China:IEEE, 2015:1.

[5] AL-IBADI A, SLEIMAN J B, CASSAR Q, et al. Terahertz biomedical imaging:from multivariate analysis and detection to material parameter extraction[C]//Progress in Electromagnetics Research Symposium:Spring.Saint Petersbourg, Russia:IEEE, 2017:2756-2762.

[6] FAN S, PICKWELL-MACPHERSON E. Terahertz biomedical research:preparing for a successful experiment[C]//General Assembly and Scientific Symposium (URSI GASS). Beijing:IEEE, 2014:1.

[7] FEDERICI J F, SCHULKIN B, HUANG F, et al. THz imaging and sensing for security applications-explosives, weapons and drugs[J]. Semiconductor Science and Technology, 2005, 20(7):S266-S280.

[8] KHANAL S. Quantum cascade lasers for terahertz applications[M]. Bethlehem:Lehigh University Press, 2017.

[9] ZAK A, ANDERSSON M A, BAUER M,et al.Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene[J].Nano Letters, 2014, 14(10):5834-5838.

[10] CONG Longqing, TAN Siyu, YAHIAOUI R,et al.Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers:a comparison with the metasurfaces[J].Applied Physics Letters, 2015, 106(3):031107.

[11] ZHU Jianfei, MA Zhaofeng, SUN Wujiong,et al.Ultra-broadband terahertz metamaterial absorber[J].Applied Physics Letters, 2014, 105(2):021102.

[12] PARK S J, HONG J T, CHOI S J, et al. Detection of microorganisms using terahertz metamaterials[J]. Scientific Reports, 2014, 4:4988.

[13] KLEINE-OSTMANN T, NAGATSUMA T.A review on terahertz communications research[J].Journal of Infrared Millimeter and Terahertz Waves, 2011, 32(2):143-171.

[14] MUMTAZ S, JORNET J M, AULIN J A,et al.Terahertz communication for vehicular networks[J].IEEE Transactions on Vehicular Technology, 2017, 66(7):5617-5625.

[15] ELAYAN H, AMIN O, SHUBAIR R M, et al. Terahertz communication:the opportunities of wireless technology beyond 5G[C]//International Conference on Advanced Communication Technologies and Networking.Marrakech, Morocco:IEEE, 2018:1-5.

[16] AL-HUJAZY R, COLLIER C. Integration and simulation of microfluidic platforms and terahertz time-domain spectroscopy systems[C]//Proceedings of the Canadian Society for Mechanical Engineering International Congress. Toronto, Canada:CSME, 2018:1-4.

[17] HUTH F, MOLTER D, KLIER J, et al. THz-TDS based near-field imaging and spectroscopy at 25 nm length scale[C]//The European Conference on Lasers and Electro-Optics. Munich, Germany:Optical Society of America, 2015:CC_5.

[18] DA SILVA V H, VIEIRA F S, ROHWEDDER J J R, et al. Multivariate quantification of mebendazole polymorphs by terahertz time domain spectroscopy (THZ-TDS)[J]. Analyst, 2017, 142(9):1519-1524.

[19] KAWAKAMI D, TABATA H. THz-TDS measurements of hydration state of bio related materials and data analysis by machine learning[C]//The 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Nagoya, Japan:IEEE, 2018:1.

[20] YAROTSKI D A, AVERITT R D, NEGRE N, et al. Ultrafast carrier-relaxation dynamics in self-assembled InAs/GaAs quantum dots[J]. JOSA B, 2002, 19(6):1480-1484.

[21] GREENE B I, FEDERICI J F, DYKAAR D R, et al. Picosecond pump and probe spectroscopy utilizing freely propagating terahertz radiation[J]. Optics Letters, 1991, 16(1):48-49.

[22] KAR S, NGUYEN V L, MOHAPATRA D R, et al. Ultrafast spectral photoresponse of bilayer graphene:optical pump-terahertz probe spectroscopy[J]. ACS Nano, 2018, 12(2):1785-1792.

[23] MATSUI Y, TERASHIGE T, UCHIDA R, et al. Intrinsic carrier scattering mechanism in anatase TiO2 investigated by ultraviolet-pump terahertz-probe spectroscopy[J]. Physical Review B, 2016, 94(4):041113.

[24] NISHITANI J, NAGASHIMA T, LIPPMAA M, et al. Optical pump-terahertz probe analysis of long-lived d-electrons and relaxation to self-trapped exciton states in MnO[J]. Applied Physics Letters, 2016, 108(16):162101.

[25] JOYCE H J, EYRE L, ADEYEMO S O, et al. Probing the photophysics of semiconductor nanomaterials using optical pump-terahertz probe spectroscopy:from nanowires to perovskites[C]//Physical Chemistry of Semiconductor Materials and Interfaces XVⅡ. San Diego, USA:International Society for Optics and Photonics, 2018, 10724:107240F.

[26] TEO S M, OFORI-OKAI B K, WERLEY C A, et al. Single-shot THz detection techniques optimized for multidimensional THz spectroscopy[J]. Review of Scientific Instruments, 2015, 86(5):051301.

[27] XU Shixiang. Single-shot electro-optic detection for intense terahertz pulses[C]//International Symposium on Ultrafast Phenomena and Terahertz Waves. Changsha, China:Optical Society of America, 2018:TuB2.

[28] JIANG Zhiping, ZHANG Xicheng. Electro-optic measurement of THz field pulses with a chirped optical beam[J]. Applied Physics Letters, 1998, 72(16):1945-1947.

[29] LE BLANC S P, GAUL E W, MATLIS N H, et al. Single-shot measurement of temporal phase shifts by frequency-domain holography[J]. Optics Letters, 2000, 25(10):764-766.

[30] MATLIS N H, REED S, BULANOV S S, et al. Snapshots of laser wakefields[J]. Nature Physics, 2006, 2(11):749-753.

[31] MATLIS N H, PLATEAU G R, VAN TILBORG J, et al. Single-shot spatio temporal measurements of ultrashort THz waveforms using temporal electric-field cross correlation[J]. JOSA B, 2011, 28(1):23-27.

[32] SHAN J, WELING A S, KNOESEL E, et al. Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling[J]. Optics Letters, 2000, 25(6):426-428.

[33] 翟召辉, 钟森城, 孟坤, 等. 基于光栅倾斜脉冲前沿的太赫兹脉冲单次测量[J]. 太赫兹科学与电子信息学报, 2015, 13(1):23-26,30. ZHAI Zhaohui, ZHONG Sencheng, MENG Kun,et al. Single shot measurement of terahertz pulse based on pulse front tilting by grating diffraction[J]. Journal of Terahertz Science and Electronic Information Engineering, 2015, 13(1):23-26, 30.(in Chinese)

[34] JAMISON S P, SHEN J, Macleod A M, et al. High-temporal-resolution, single-shot characterization of terahertz pulses[J]. Optics Letters, 2003, 28(18):1710-1712.

[35] SALIN F, GEORGES P, ROGER G, et al. Single-shot measurement of a 52-fs pulse[J]. Applied Optics, 1987, 26(21):4528-4531.

[36] WAKEHAM G P, NELSON K A. Dual-echelon single-shot femtosecond spectroscopy[J]. Optics Letters, 2000, 25(7):505-507.

[37] KIM K Y, YELLAMPALLE B, TAYLOR A J, et al. Single-shot terahertz pulse characterization via two-dimensional electro-optic imaging with dual echelons[J]. Optics Letters, 2007, 32(14):1968-1970.

[38] IBRAHIM A, SHARMA G, SINGH K, et al. Terahertz detection based on spectral-domain interferometry using Mach-Zehnder interferometer[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37(9):837-845.

[39] SHARMA G, SINGH K, IBRAHIM A, et al. Self-referenced spectral domain interferometry for improved signal-to-noise measurement of terahertz radiation[J]. Optics Letters, 2013, 38(15):2705-2707.

[40] SHARMA G, SINGH K, AL-NAIB I, et al. Terahertz detection using spectral domain interferometry[J]. Optics Letters, 2012, 37(20):4338-4340.

[41] IBRAHIM A, FÉRACHOU D, SHARMA G, et al. Ultra-high dynamic range electro-optic sampling for detecting millimeter and sub-millimeter radiation[J]. Scientific Reports, 2016, 6:23107.

[42] ZHENG Shuiqin, PAN Xinjian, CAI Yi,et al.Common-path spectral interferometry for single-shot terahertz electro-optics detection[J].Optics Letters, 2017, 42(21):4263-4266.

[43] ZHENG Shuiqin, LIN Qinggang, CAI Yi,et al.Improved common-path spectral interferometer for single-shot terahertz detection[J]. Photonics Research, 2018, 6(3):177-181.