doi:

DOI: 10.3724/SP.J.1249.2019.02200

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2019/36:2 PP.200-206

The interaction of terahertz with water molecules: mechanism, applications, and new trends


Abstract:
Terahertz technology has gone through a rapid development since the beginning of the 21st century owing to the great support from governments around the world. This review introduces the interaction mechanism of terahertz waves and water molecules. We introduce the terahertz biomedical research originated from this interaction mechanism, especially the development as well as the core challenges in cancer diagnosis. Our work in response is described. Finally, we discuss some novel research work and the trend of the terahertz technology based on the interaction of terahertz waves and water.

Key words:electromagnetic wave physics,terahertz,terahertz time domain spectroscopy,terahertz imaging,biomedical applications,cancer diagnosis,water network

ReleaseDate:2019-12-02 09:24:38



[1] AUSTON D H. Picosecond optoelectronic switching and gating in silicon[J]. Applied Physics Letters, 1975, 26(3):101-103.

[2] HOSAKO I, SEKINE N, PATRASHIN M, et al. At the dawn of a new era in terahertz technology[J]. Proceedings of the IEEE, 2007, 95(8):1611-1623.

[3] EBBINGHAUS S, KIM S J, HEYDEN M, et al. Protein sequence-and pH-dependent hydration probed by terahertz spectroscopy[J]. Journal of the American Chemical Society, 2008, 130(8):2374-2375..

[4] LUPI L, COMEZ L, PAOLANTONI M, et al. Hydration and aggregation in mono-and disaccharide aqueous solutions by gigahertz-to-terahertz light scattering and molecular dynamics simulations[J]. Journal of Physical Chemistry B, 2012, 116(51):14760-14767.

[5] DAGADE D H, BARGE S S. Hydrogen bonding in liquid water and in the hydration shell of salts[J]. Chemical Physics and Physical Chemistry, 2016, 17(6):902-912.

[6] MOLLER U, COOKE D G, TANAKA K, et al. Terahertz reflection spectroscopy of Debye relaxation in polar liquids (invited)[J]. Journal of the Optical Society of America B-Optical Physics, 2009, 26(9):A113-A125.

[7] AGMON N. Tetrahedral displacement:the molecular mechanism behind the Debye relaxation in water[J]. Journal of Physical Chemistry, 1995, 100(3):1072-1080.

[8] PERAKIS F, MARCO L D, SHALIT A, et al. Vibrational spectroscopy and dynamics of water[J]. Chemical Reviews, 2016, 116(13):7590.

[9] RØNNE C, KEIDING S R. Low frequency spectroscopy of liquid water using THz-time domain spectroscopy[J]. Journal of Molecular Liquids, 2002, 101(1/2/3):199-218.

[10] GUILLOT B, GUISSANI Y. A computer simulation study of the temperature dependence of the hydrophobic hydration[J]. Journal of Chemical Physics, 1993, 99(10):8075-8094.

[11] ARKHIPOV V I, AGMON N, ARKHIPOV V I. Relation between macroscopic and microscopic dielectric relaxation times in water dynamics[J]. Israel Journal of Chemistry, 2010, 43(3-4):363-371.

[12] BURSULAYA B D, KIM H J. Spectroscopic and dielectric properties of liquid water:a molecular dynamics simulation study[J]. Journal of Chemical Physics, 1998, 109(12):4911-4919.

[13] RØNNE C, THRANE L, ǺSTRAND P O, et al. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation[J]. Journal of Chemical Physics, 1997, 107(14):5319-5331.

[14] YADA H, NAGAI M, TANAKA K. Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy[J]. Chemical Physics Letters, 2008, 464(4/5/6):166-170.

[15] ZALDEN P, SONG Liwei, WU Xiaojun, et al. Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation[J]. Nature Communications, 2018, 9(1):2142.

[16] NGAI K L. Interpretation of the GHz to THz dielectric relaxation dynamics of water in the framework of the coupling model[J]. Journal of Molecular Liquids, 2018, 253:113-118.

[17] SIEGEL P H. Terahertz technology in biology and medicine[C]//MTT-S International Microwave Symposium Digest. Fort Worth, USA:IEEE, 2004:1575.

[18] WOODWARD R M, WALLACE V P, PYE R J, et al. Terahertz pulse imaging of ex vivo basal cell carcinoma[J]. Journal of Investigative Dermatology, 2003, 120(1):72-78.

[19] YANG Xiang, ZHAO Xiang, YANG Ke, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10):810-824.

[20] ASHWORTH P C, PICKWELL-MACPHERSON E, PROVENZANO E, et al. Terahertz pulsed spectroscopy of freshly excised human breast cancer[J]. Optics Express, 2009, 17(15):12444-12454.

[21] JUNG E, LIM M, MOON K, et al. Terahertz pulse imaging of micro-metastatic lymph nodes in early-stage cervical cancer patients[J]. Journal of the Optical Society of Korea, 2011, 15(2):155-160.

[22] YAMAGUCHI S, FUKUSHI Y, KUBOTA O, et al. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy[J]. Scientific Reports, 2016, 6:30124.

[23] SUN Yiwen, ZHU Zexuan, CHEN Siping, et al. Observing the temperature dependent transition of the GP2 peptide using terahertz spectroscopy[J]. PLOS One, 2012, 7(11):e50306.

[24] PENG Yan, CHEN Wanqing, ZHU Yiming. Identification of biomarker (L-2HG) in real human brain glioma by terahertz spectroscopy[C]//CLEO:Applications and Technology. San Jose, USA:Optical Society of America, 2018:ATh3Q-5.

[25] GENG Zhaoxin, ZHANG Xiong, FAN Zhiyuan, et al. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage[J]. Scientific Reports, 2017, 7:16378.

[26] CHAN W L, CHARAN K, TAKHAR D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12):S293.

[27] WADE C G, ŠIBALIC N, DE MELO N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 2017, 11(1):40-43.

[28] CHERNOMYRDIN N V, KUCHERYAVENKO A S, KOLONTAEVA G S, et al. Reflection-mode continuous-wave 0.15λ-resolution terahertz solid immersion microscopy of soft biological tissues[J]. Applied Physics Letters, 2018, 113(11):111102.

[29] NAFTALY M, MOLLOY J. A multi-lab intercomparison study of THz time-domain spectrometers[C]//The 40th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THZ). Hong Kong, China:IEEE, 2015:1.

[30] SY S, HUANG Shengyang, WANG Yixiang, et al. Terahertz spectroscopy of liver cirrhosis:investigating the origin of contrast[J]. Physics in Medicine and Biology, 2010, 55(24):7587-7596.

[31] CHOPRA N, YANG Ke, UPTON J, et al. Fibroblasts cell number density based human skin characterization at THz for in-body nanonetworks[J]. Nano Communication Networks, 2016, 10:60-67.

[32] TRUONG B C, FITZGERALD A J, FAN S A. Concentration analysis of breast tissue phantoms with terahertz spectroscopy[J]. Biomedical Optics Express, 2018, 9(3):1334-1349.

[33] FAN Shuting, QIAN Zhengfang, WALLACE V P. Hydration of gelatin molecules studied with terahertz time-domain spectroscopy[C]//SPIE/COS Photonics Asia. International Society for Optics and Photonics. Beijing:SPIE, 2018:1082604.

[34] PUPEZA I, WILK R, KOCH M. Highly accurate optical material parameter determination with THz time-domain spectroscopy[J]. Optics Express, 2007, 15(7):4335-4350.

[35] DUVILLARET L, GARET F, COUTAZ J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3):739-746.

[36] WITHAYACHUMNANKUL W, FISCHER B M, LIN H A. Uncertainty in terahertz time-domain spectroscopy measurement[J]. Journal of the Optical Society of America B-Optical Physics, 2008, 25(6):1059-1072.

[37] WITHAYACHUMNANKUL W, NAFTALY M. Fundamentals of measurement in terahertz time-domain spectroscopy[J]. Journal of Infrared Millimeter and Terahertz Waves, 2014, 35(8):610-637.

[38] NAFTALY M, SHOAIB N, STOKES D, et al. Intercomparison of terahertz dielectric measurements using vector network analyzer and time-domain spectrometer[J]. Journal of Infrared Millimeter and Terahertz Waves, 2016, 37(7):691-702.

[39] NAFTALY M, CLARKE R G, HUMPHREYS D A, et al. Metrology state-of-the-art and challenges in broadband phase-sensitive terahertz measurements[J]. Proceedings of the IEEE, 2017(99):1-15.

[40] FAN Shuting, PARROTT E P, UNG B S, et al. Calibration method to improve the accuracy of THz imaging and spectroscopy in reflection geometry[J]. Photonics Research, 2016, 4(3):29-35.

[41] CHEN Xuequan, PARROTT E P, UNG B S. A robust baseline and reference modification and acquisition algorithm for accurate THz imaging[J]. IEEE Transactions on Terahertz Science and Technology, 2017, 7(5):493-501.

[42] JIN Qi, YIWEN E, WILLIAMS K, et al. Observation of broadband terahertz wave generation from liquid water[J]. Applied Physics Letters, 2017, 111(7):071103.

[43] HAMM P, SAVOLAINEN J. Two-dimensional-Raman-terahertz spectroscopy of water:theory[J]. Journal of Chemical Physics, 2012, 136(9):094516.

[44] FINNERAN I A, WELSCH R, ALLODI M A, et al. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(25):6857-6861.

[45] SHALIT A, AHMED S, SAVOLAINEN J, et al. Terahertz echoes reveal the inhomogeneity of aqueous salt solutions[J]. Nature Chemistry, 2017, 9(3):273-278.

[46] GRECHKO M, HASEGAWA T, D'ANGELO F, et al. Coupling between intra-and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy[J]. Nature Communications, 2018, 9(1):885.