doi:

DOI: 10.3724/SP.J.1206.2012.00569

Progress in Biochemistry and Biophysics (生物化学与生物物理进展) 2013/40:12 PP.1201-1208

Development of Absolute Quantification of Proteome Based on Isotope Dilution


Abstract:
Absolute quantification methodologies, which allow the determination of protein concentrations inbiological samples such as cell, tissue and body fluid. Recently, protein quantification methodologies mainly areone which rely on the isotope dilution for absolute quantification of proteome and another one which rely on thestatistic analysis of MS data called the lable-free technique. In these approaches, the sample is spiked with definedamounts of isotope-labeled analogue (s) of specific proteolytic peptide (s) (AQUA and QconCAT strategies) orprotein(s) (PSAQ strategy) or PrESTs (PrESTs-SILAC). Because isotope dilution can provide accurate and presiceabsolute quantification, so they are crucial for specific applications such as the evaluation of clinical biomarkercandidates and understanding the biological function of proteins. In this review, we present a critical overview ofthese isotope dilution methodologies.

Key words:isotope dilution methodology,absolute quantification,mass spectrometry,proteomics

ReleaseDate:2015-04-18 09:14:49



Spectrom, 1983, 10(8): 471-479

[1] Julka S, Regnier F E. Recent advancements in differential proteomics based on stable isotope coding. Brief Funct Genomic Proteomic, 2005, 4(2): 158-177

[2] Ong S E, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol, 2005, 1(5): 252-262

[3] Yan W, Chen S S. Mass spectrometry-based quantitative proteomic profiling. Brief Funct Genomic Proteomic, 2005, 4(1): 27-38

[4] Pratt J M, Simpson D M, Doherty M K, et al.

[5] Ohtsuki S, Schaefer O, Kawakami H, et al.

[6] Wi enkoop S, Weckwert h W. Rel at i ve and absol ut e quant it ative shot gun prot eom i cs: t arget i ng l ow-abundance proteins in Arabidopsis thaliana. J Exp Bot, 2006, 57(7): 1529-1535

[7] Hanke S, Besir H, Oesterhelt D, et al.

[8] Havlis J, Shevchen Ko A. Absolute quantification of proteins in solutions and in polyacrylamide gels by mass spectrometry. Anal Chem, 2004, 76(11): 3029-3036

[9] Arnidge D R, Goodmanson M K, Klee G G, et al.

[10] Viswanathan C T, Bansal B S, Booth A J, et al.

[11] Sebastien G, Elodie D, Bruno D. Selected reaction monitoring applied to proteomics. J Mass Spectro, 2011, 46(3): 298-312

[12] Desiderio D M, Kai M. Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomed Mass

[13] Gerber S A, Rush J, Stemman O, et al.

[14] Kirkpatrick D S, Gerber S A, Gygi S P. The absolute quantification strategy: A general procedure for the quantification of proteins and post-translational modifications. Methods, 2005, 35(3): 265-273

[15] Kettenbach A N, Rush J, Gerber S A. Absolute quantification of protein and post-translational modification abundance with stable isotope-labeled synthetic peptides. Nat Protoc, 2011, 6(2): 175-186

[16] Sturm R, Sheynkman G, Booth C, et al.

[17] Havlis J, Shevchenko A. Absolute quantification of proteins in solutions and in polyacrylamide gels by mass spectrometry. Anal Chem, 2004, 76(11): 3029-3036

[18] Beynon R J, Doherty M K, Pratt J M, et al.

[19] Carroll K M, Simpson D M, Eyers C E, et al.

[20] Rivers J, Simpson D M, Robertson D H, et al.

[21] Kito K K, Ota T, Fujita T. A synthetic protein approach toward accurate mass spectrometric quantification of component stoichiometry of multiprotein complexes. J Proteome Res, 2007, 6(2): 792-800

[22] Mirzaei H, McBee J, Watts J R, et al. Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics. Mol Cell Proteomics, 2008, 7(4): 813-823

[23] Chen J, Wang M, Turko I V. Mass spectrometry quantification of clusterin in the human brain. Mol Neurodegener, 2012, 7(1): 41-47

[24] Berglund L, Bjorling E, Jonasson K, et al. A whole-genome bioinformatics approach to selection of antigens for systematic antibody generation. Proteomics, 2008, 8(14): 2832-2839

[25] Uhlen M, Bjorling E, Agaton C, et al.

[26] Nilsson P, Paavilainen L, Larsson K,et al.

[27] Uhlen M, Oksvold P, Fagerberg L, et al.

[28] Marlis Z, Werner L S, Emma L, et al.

[29] Brun V, Dupuis A, Adrait A, et al.

[30] Singh S, Springer M, Steen J, et al.

[31] Ivan Matic, Ellis G Jaffray, Senga K Oxenham, et al.

[32] Janecki D J, Bemis K G, Tegeler T J, et al.

[33] Picard G, Lebert D, Louwagie M, et al.

[34] Brun V, Masselon C, Garin J, et al.

[35] Dupuis A, Hennekinne J A, Garin J, et al.

[36] Rifai N, Gillette M A, Carr S A. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol, 2006, 24(8): 971-983

[37] Ronquist Nii Y, Edlund P O. Determination of corticosteroids in tissue samples by liquid chromatography- tandem mass

[38] Wolf Yadlin A, Hautaniemi S, Lauffenburger D A. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci USA, 2007,104(14): 5860-5865

[39] Kettenbach A N, Rush J, Gerber S A. Absolute quantification of protein and post-translational modification abundance with stable isotope-labeled synthetic peptides. Nat Protoc, 2011, 6(2): 175-186

[40] Hannah J, Claire E E, Patrick A E, et al.

[41] Huillet C, Adrait A, Lebert D. Accurate quantification of cardiovascular biomarkers in serum using protein standard absolute quantification (PSAQTM) and selected reaction monitoring. Mol Cell Proteomics, 2012, 11(2): M111.008235

[42] Adrait A, Lebert D, Trauchessec M, et al.

[43] Pannee J, Portelius E, Oppermann M, et al.

[44] Hirotaka Kawakami, Sumio Ohtsuki, Junichi Kamiie,et al.

[45] Keshishian H, Addona T, Burgess M, et al.Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics, 2007, 6(12): 221-229